R/plot_residual_cor.R
plot_residual_cor.Rd
Plot the posterior mean estimator of residual correlation matrix reordered by first principal component using corrplot
function from the package of the same name.
plot_residual_cor(
mod,
prob = NULL,
main = "Residual Correlation Matrix from LVM",
cex.main = 1.5,
diag = FALSE,
type = "lower",
method = "color",
mar = c(1, 1, 3, 1),
tl.srt = 45,
tl.cex = 0.5,
...
)
An object of class "jSDM"
.
A numeric scalar in the interval \((0,1)\) giving the target probability coverage of the intervals, by which to determine whether the correlations are "significant".
If prob=0.95
is specified only significant correlations, whose \(95\%\) HPD interval does not contain zero, are represented.
Defaults to prob=NULL
to represent all correlations significant or not.
Character, title of the graph.
Numeric, title's size.
Logical, whether display the correlation coefficients on the principal diagonal.
Character, "full" (default), "upper" or "lower", display full matrix, lower triangular or upper triangular matrix.
Character, the visualization method of correlation matrix to be used. Currently, it supports seven methods, named "circle" (default), "square", "ellipse", "number", "pie", "shade" and "color".
See par
Numeric, for text label string rotation in degrees, see text
.
Numeric, for the size of text label (variable names).
Further arguments passed to corrplot
function
No return value. Displays a reordered correlation matrix.
Taiyun Wei and Viliam Simko (2017). R package "corrplot": Visualization of a Correlation Matrix (Version 0.84)
Warton, D. I.; Blanchet, F. G.; O'Hara, R. B.; O'Hara, R. B.; Ovaskainen, O.; Taskinen, S.; Walker, S. C. and Hui, F. K. C. (2015) So Many Variables: Joint Modeling in Community Ecology. Trends in Ecology & Evolution, 30, 766-779.
library(jSDM)
# frogs data
data(frogs, package="jSDM")
# Arranging data
PA_frogs <- frogs[,4:12]
# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])
# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod<-jSDM_binomial_probit(# Response variable
presence_data = PA_frogs,
# Explanatory variables
site_formula = ~.,
site_data = Env_frogs,
n_latent=2,
site_effect="random",
# Chains
burnin=100,
mcmc=100,
thin=1,
# Starting values
alpha_start=0,
beta_start=0,
lambda_start=0,
W_start=0,
V_alpha=1,
# Priors
shape=0.1, rate=0.1,
mu_beta=0, V_beta=1,
mu_lambda=0, V_lambda=1,
# Various
seed=1234, verbose=1)
#>
#> Running the Gibbs sampler. It may be long, please keep cool :)
#>
#> **********:10.0%
#> **********:20.0%
#> **********:30.0%
#> **********:40.0%
#> **********:50.0%
#> **********:60.0%
#> **********:70.0%
#> **********:80.0%
#> **********:90.0%
#> **********:100.0%
# Representation of residual correlation between species
plot_residual_cor(mod)
plot_residual_cor(mod, prob=0.95)