Source code for forestatrisk.predict.interpolate_rho
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ==============================================================================
# author :Ghislain Vieilledent
# email :ghislain.vieilledent@cirad.fr, ghislainv@gmail.com
# web :https://ecology.ghislainv.fr
# python_version :>=2.7
# license :GPLv3
# ==============================================================================
# Standard library imports
from __future__ import division, print_function # Python 3 compatibility
import os
# Third party imports
import numpy as np
from osgeo import gdal
# Interpolate_rho
[docs]
def interpolate_rho(
rho, input_raster, output_file="output/rho.tif", csize_orig=10, csize_new=1
):
"""Resample rho values with interpolation.
This function resamples the spatial random effects (rho values)
obtained from an iCAR model. It performs a cubicspline interpolation
at a finer resolution and smoothens the rho values.
:param rho: Original rho values estimates with the iCAR model.
:param input_raster: Path to input raster defining the region.
:param output_file: Path to output raster file with resampled rho values.
:param csize_orig: Original size of the spatial cells (in km).
:param csize_new: New size of the spatial cells for cubicspline
interpolation (in km).
"""
# Region
r = gdal.Open(input_raster)
ncol = r.RasterXSize
nrow = r.RasterYSize
gt = r.GetGeoTransform()
xres = gt[1]
yres = -gt[5]
Xmin = gt[0]
Xmax = gt[0] + xres * ncol
Ymin = gt[3] - yres * nrow
Ymax = gt[3]
# Cell number from region
csize_orig = csize_orig * 1000 # Transform km in m
ncell_X = int(np.ceil((Xmax - Xmin) / csize_orig))
ncell_Y = int(np.ceil((Ymax - Ymin) / csize_orig))
# NumpyArray
rho = np.array(rho)
rho_arr = rho.reshape(ncell_Y, ncell_X)
# Create .tif file
dirname = os.path.dirname(output_file)
rho_orig_filename = os.path.join(dirname, "rho_orig.tif")
driver = gdal.GetDriverByName("GTiff")
if os.path.isfile(rho_orig_filename):
os.remove(rho_orig_filename)
rho_R = driver.Create(
rho_orig_filename,
ncell_X,
ncell_Y,
1,
gdal.GDT_Float64
)
rho_R.SetProjection(r.GetProjection())
gt = list(gt)
gt[1] = csize_orig
gt[5] = -csize_orig
rho_R.SetGeoTransform(gt)
# Write data
print("Write spatial random effect data to disk")
rho_B = rho_R.GetRasterBand(1)
rho_B.WriteArray(rho_arr)
rho_B.FlushCache() # Write cache data to disk
# Compute statistics
print("Compute statistics")
rho_B.ComputeStatistics(False)
# Set nodata value
rho_B.SetNoDataValue(-9999)
# Dereference driver
rho_B = None
del rho_R
# Cubicspline interpolation to csize_new*1000 km
print("Resampling spatial random effects to file " + output_file)
param = gdal.WarpOptions(
warpOptions=["overwrite"],
format="GTiff",
xRes=csize_new * 1000,
yRes=csize_new * 1000,
resampleAlg=gdal.GRA_CubicSpline,
creationOptions=["COMPRESS=DEFLATE"],
)
gdal.Warp(output_file, rho_orig_filename, options=param)
# End