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Abstract
• Question: Tree mortality can be modeled using two complementary covariates, tree size and tree
growth. Tree growth is an integrative measure of tree vitality while tree diameter is a good index of
sensitivity to disturbances and can be considered as a proxy for tree age which may indicate senes-
cence. Few mortality models integrate both covariates because classical model calibration requires
large permanent plot data-sets which are rare. How then can we calibrate a multivariate mortality
model including size and growth when permanent plots data are not available?
• Location: To answer this question, we studied Abies alba and Picea abies mortality in the French
Swiss and Italian Alps.
•Method: Our study proposes an alternative semi-parametric method which includes a random sam-
ple of living and dead trees with diameter and growth measurements.
• Results: We were able to calibrate a mortality model combining both size-dependent and growth-
dependent mortality. We demonstrated that A. alba had a lower annual mortality rate (10%) than
P. abies (18%) for low growth (< 0.2 mm year−1). We also demonstrated that for higher diameters
(DBH ≥ 70 cm), P. abies had a higher mortality rate (0.45%) than A. alba (0.32%).
• Conclusion: Our results are consistent with the mechanisms of colonization-competition trade-off
and of successional niche theory which may explain the coexistence of these two species in the Alps.
The method we developed should be useful for forecasting tree mortality and can improve the effi-
ciency of forest dynamics models.

Mots-clés :
Abies alba /
probabilités conditionnelles /
modèles non-paramétriques /
Picea abies /
mortalité des arbres

Résumé – Mortalité du sapin pectiné et de l’épicea commmun dans les alpes occidentales – une
approche semi-paramétrique combinant la mortalité dépendant de la taille et de la croissance.
• Question : Il est possible de modéliser la mortalité des arbres en utilisant deux covariables complé-
mentaires : la taille et la croissance de l’arbre. La croissance est une mesure synthétique de la vitalité
alors que le diamètre est un bon indicateur de la sensibilité aux perturbations et est très fortement cor-
rélé à l’âge de l’arbre, qui détermine la sénescence. Peu de modèles de mortalité intègrent les deux
covariables, car cela nécessite, pour les approches classiques, une calibration à partir de données de
placettes permanentes qui sont rares. Comment obtenir un modèle de mortalité multivarié, incluant
la taille et la croissance, lorsque des données de placettes permanentes ne sont pas disponibles ?
• Localisation géographique : Pour répondre à cette question, nous avons étudié la mortalité du sapin
pectiné (Abies alba) et de l’epicéa commmun (Picea abies) dans les Alpes suisses françaises et ita-
liennes.
• Méthode : Notre étude propose une méthode semi-parametrique alternative s’appuyant sur un
échantillon d’arbres morts et vivants avec des mesures de diamètre et de croissance.
• Résultats : Nous avons obtenu un modèle combinant la mortalité dépendant à la fois de la taille et
de la croissance. Nous avons démontré qu’A. alba avait un taux de mortalité inférieur (10 %) à celui
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de P. abies (18 %) pour une faible croissance (< 0.2 mm an−1). De plus, pour de larges diamètres
(DBH ≥ 70 cm), P. abies a un taux de mortalité supérieur (0.45 %) à A. alba (0.32 %).
• Conclusion : Nos résultats sont en accord avec les mécanismes de niche de succession et de com-
promis entre colonisation et compétition qui sont invoqués pour expliquer la coexistence des deux
espéces dans les Alpes. Notre méthode devrait contribuer à améliorer la prédiction du taux de morta-
lité et la précision des modèles de dynamique forestière.

Abbreviations: DBH: Diameter at Breast Height (DBH = 1.30 m), P. abies: Picea abies (L.) Karst.
(Norway Spruce), A. alba: Abies alba Mill. (Silver Fir), NFI: National Forest Inventory.

1. INTRODUCTION

1.1. The tree mortality process

Natural mortality of trees is an important mechanism driv-
ing forest dynamics (Monserud and Sterba, 1999). In forest
dynamics models, the mortality provides a quantitative de-
scription of several species life-history traits, such as longevity
or shade-tolerance, that determine species succession or coex-
istence (Harcombe, 1987).

Natural mortality of trees can be separated in two cate-
gories: regular and irregular mortality (Hawkes, 2000; Lee,
1971; Monserud, 1976). Regular mortality is associated
with a progressive reduction in vitality. It can result ei-
ther from competition for light, water and soil nutrients
(Peet and Christensen, 1987) or from senescence defined as
a decrease in resource utilization efficiency because of lim-
itations in respiratory efficiency or hydraulic conductance
(Gower et al., 1996; Hubbard et al., 1999; MacFarlane et al.,
2002). Irregular mortality can be described as mortality caused
by random events or hazards, e.g. by insect attacks, fire, wind,
snow or rock falls (Lee, 1971) which are frequent in highly
disturbed mountain stands (Clark, 1996; Coomes et al., 2003;
Nishimura, 2006; Worrall et al., 2005). Decreasing vitality
also leads to increasing susceptibility to fatal agents, e.g. in-
sects, fungi and drought, so that irregular and regular mortality
interact together to determine tree death.

From a statistical point of view, mortality can be mod-
eled using two complementary covariates: tree size and tree
growth. Growth is an integrative measure of tree vitality
which, at a young age, depends principally on competition.
For a given size, fast growing individuals are supposed to have
a higher survivorship than slow growing individuals (Bigler
and Bugmann 2003; Kobe and Coates 1997; Kunstler et al.
2005; Lin et al. 2001; Monserud 1976; Wyckoff and Clark
2000; 2002). In combination with growth, tree diameter is a
good index of sensitivity to disturbances. Bigger trees with
bigger crowns are more sensitive to hard wind and heavy snow
whereas smaller trees are protected by the canopy (Canham
et al., 2001; Fridman and Valinger, 1998; Peltola et al., 1999;
Valinger and Fridman, 1997). Moreover it seems that in-
sects affect preferentially older trees (Zolubas, 2003) and that
fires and large mammals cause mortality among small trees
(Muller-Landau et al., 2006). Tree diameter can also be con-
sidered as a proxy for tree age which determines the senes-
cence.

1.2. Taking into account both size- and
growth-dependent mortality in a flexible model

Despite its importance in determining species strategies and
forest dynamics, tree mortality is difficult to model (Franklin
et al., 1987; Hawkes, 2000). Most mortality models in forest
systems predict only growth-dependent mortality for juveniles
(Kobe et al., 1995; Kunstler et al., 2005) or a specific type of
size-dependent irregular mortality (Hawkes, 2000; Monserud,
1976). In her review on woody plant mortality algorithms,
Hawkes (2000) underlined that only a third of the models inte-
grate combinations of covariates to determine mortality. Many
of them combine competition indexes and size (Eid and Tuhus,
2001; Moore et al., 2004; Uriarte et al., 2004; Yao et al., 2001).
Competition affects the carbon balance of a tree by depriving it
of resources. Nevertheless, since competition, age and abiotic
factors all affect growth, growth is a more integrative measure
of whole-plant carbon balance, which determines tree vital-
ity (Kobe et al., 1995). Tree growth can be estimated from
tree-ring series, which provide high resolution records of tree
growth, or from consecutive permanent plot censuses which
provide a coarser resolution of growth through DBH increment
measures (Wunder et al., 2007). Permanent plot surveys are
less destructive than tree coring, but they require at least three
censuses on long time intervals to link mortality observations
between the second and third census to past growth between
the two first censuses. Such experimental devices are not al-
ways available (but see Wunder et al., 2007; and Monserud,
1976) so that some authors have proposed statistical methods
to obtain mortality-growth models from a reduced sample of
dead and living trees from a single census (Kobe et al., 1995;
Wyckoff and Clark, 2000). Nevertheless, no methods are avail-
able that combine both growth and size in a multivariate mor-
tality model when no permanent plot data are available.

When permanent plot data are available, competition in-
dexes (or growth) and size are often combined in a paramet-
ric regression, such as the logistic regression, to determine
mortality estimates (Eid and Tuhus, 2001; Fortin et al., 2008;
Moore et al., 2004; Uriarte et al., 2004; Wunder et al., 2007;
Yao et al., 2001). Parametric functions have two disadvantages
when trying to calibrate mortality models. First, they assume
a strict model shape which may not conveniently represent the
highly skewed shape of mortality given growth and size. Sec-
ond, their estimations depend on the distribution of the data
points which are often unbalanced in regard to diameter with
less observations for big trees (Lavine, 1991; Vieilledent et al.,
2009; Wyckoff and Clark, 2000).
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Table I. Cemagref permanent plot characteristics.

1.3. Objectives and hypothesis

In this study we propose an alternative semi-parametric
method using conditional probabilities to model both size-
dependent and growth-dependent mortality using diameter and
past radial growth as covariates. The method is applicable
when no long-term permanent plot data are available. The ap-
proach relies principally on a prior mortality rate that can be
obtained from National Forest Inventories. The prior is com-
bined with diameter and growth data obtained for a sample of
living and dead trees on a reduced number of plots.

We focused on two species: Abies alba Mill. (Silver Fir) and
Picea abies (L.) Karst. (Norway Spruce), which grow in mixed
or pure stands at the mountain-belt elevation (800–1800 m) in
the Western Alps. Our objective was to accurately model size-
and growth-dependent mortality for these two species provid-
ing insights into species strategies and dynamics. Our ecolog-
ical hypothesis were (i) A. alba survives better at low growth
rates than P. abies as it is more shade-tolerant and (ii) P. abies
is more susceptible to mortality than A. alba for larger diame-
ters because it is more sensitive to drought, insects, snow dam-
age and storms at this elevation.

2. MATERIALS AND METHODS

2.1. Field data for mortality-diameter model

Mortality modelling was based on three different data-sets:
(i) Swiss national forest inventory (NFI), (ii) French NFI, and
(iii) permanent-plots from the Cemagref network.

The Swiss NFI includes 1 982 permanent sample plots es-
tablished between 1983 and 1985 and measured again be-
tween 1993 and 1995. Tree attributes (tree species, status dead
or alive and DBH) were collected on two concentric circular
plots, 200 m2 for trees of at least 12 cm DBH and 500 m2 for
trees of at least 36 cm DBH (Ulmer, 2006). Logged trees were
not taken into account. The Swiss NFI stands were dominated
by A. alba or P. abies and had an elevation from 800 to 1 800 m

(mountain-belt elevation). Plots were all situated in the Swiss
Alps.

The French NFI was analyzed for the twelve administra-
tive areas that constitute the French Alps. Measurements are
available from 1992 to 2002 on 4 776 temporary plots and are
part of the third NFI. Tree attributes were measured on three
concentric circular plots with a radius of 6, 9 and 15 m for
trees having DBH between 7.5 and 22.5 cm, between 22.5 and
37.5 cm and above to 37.5 cm, respectively. Dead trees for
which death was estimated to be less than 5 y were identified
on the basis of the dates of past tempests and the state of the
bark. Similar to the Swiss NFI, logged trees were not included
in the analysis.

The two NFIs were complemented by 7 permanents-plots
from the Cemagref network located in the French Alps. Plots
were installed from 1994 to 2002 and were measured again
from 2005 to 2006 (Tab. I). No silvicultural operations had
been performed on these plots for at least ten years before in-
stallation. Plots ranged from 0.25 to 0.80 ha. Stands were dom-
inated by A. alba and P. abies. Plot elevations ranged from 800
to 1 800 m. All trees with a minimum of 5 cm DBH were mea-
sured.

Combining these three data-sets, a large sample size was
available for analysis with a total of 22 127 A. alba and 45 237
P. abies.

2.2. Mortality-diameter model

We used a semi-parametric Bayesian approach to estimate
the mortality-diameter model parameters. This approach relied
on a modified Ayer’s algorithm fully detailed in a previous
article (Vieilledent et al., 2009). The semi-parametric model
divided the range of diameters into bins and then calculated
the associated probabilities of mortality. The model assumed
a monotonic decrease of mortality on the interval [0,D0) fol-
lowed by a monotonic increase of mortality on the DBH in-
terval [D0, 135) (DBH in cm). D0 was the diameter at which
the mortality was minimal. The modified Ayer’s algorithm
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allowed us to identify D0 (D0 = 45 cm for both species) and
the sequence of diameter bins which respects our assumption
of decreasing and increasing mortality with DBH.

For each identified DBH class, we estimated an annual mor-
tality rate using a Bayesian approach. Let zi j be the event that
individual i of diameter class j survived (zi j = 1) or died
(zi j = 0) during a time interval Yi (in years) with probabil-
ity 1−μ′Di j

, zi j ∼ Bernoulli (zi j|1−μ′Di j
). We expressed 1−μ′Di j

as a function of the annual mortality rate μDj associated with
diameter class j and Yi:

μ′Di j
= 1 − (1 − μDj )

Yi . (1)

We used a logit transformation for mortality rate:

logit(μDj ) = λDj . (2)

Priors for the parameters λDj were taken non-informative with
a large variance: λDj ∼ Normal(0, 1.0 × 106). We obtained a
posterior distribution for each parameter from which we com-
puted the mean, the standard deviation, and the 95% quantiles.

2.3. Field data including growth and diameter for dead
and living trees

Growth data for dead and living trees were not available
in the NFI data-sets. To estimate size and recent growth his-
tory for dead and living trees, we measured the DBH and we
cored all recently dead trees and a random sample of living
trees with height > 1.30 m on the 7 Cemagref plots. We com-
pleted the data-set for living trees adding two more plots which
were located in the Italian Alps (Tab. I). The annual mean ra-
dial growth on the last five years was obtained from analysis
of cores using the LINTAB 5 measuring table and the TSAP
software. We measured the DBH of all dead and sampled liv-
ing trees using a metric diameter tape. A total of 520 living
trees and 53 dead trees were measured for A. alba and 458 and
179 for P. abies. For living trees, using core analysis on a time
interval of 25 y, we obtained several values of DBH and past
radial growth. A total of 2 589 measurements for living trees
and 53 mesurements for dead trees were obtained for A. alba
and 2 270 and 179 for P. abies (Fig. 1).

As we had no idea of the date of death of dead trees and as
we only cored a sample of living trees on each plot, we lacked
the proportions of living and dead trees to determine an annual
mortality rate (Wyckoff and Clark, 2000). In this case, classical
statistics such as logistic regressions (Monserud and Sterba,
1999; Wunder et al., 2007) cannot be used to estimate annual
mortality rate as a function of past radial growth and diame-
ter. Nevertheless, it is possible to compute the probability for
a dead tree to be in the diameter (D) class j and in the growth
(G) class k: p(D j,Gk|dead) and the corresponding probabil-
ity for a living tree: p(D j,Gk |alive). Taken together, these two
probabilities can be used to compute the annual mortality rate
given diameter class j and growth class k: p(dead|D j,Gk) (see
next part for details).

Too few dead trees were measured for large diameters
(DBH ≥ D0) with 3 and 4 dead trees with DBH ≥ 45 cm for
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Figure 1. Data repartition for dead and living trees in regard to
growth and diameter. A total of 2 589 living trees (grey unfilled dots)
and 53 dead trees (black filled dots) were measured for A. alba and
respectively 2 270 (grey cross) and 179 (black filled triangle) for
P. abies. Too few dead trees were measured for large DBH (see re-
spectively 3 and 4 dead trees for A. alba and P. abies with DBH ≥
45 cm) to have the ability to decompose mortality given growth and
diameter on this range of diameter. We used a local smoother (see
function lowess() in R 2.5.0, Ihaka and Gentleman, 1996) to visualize
growth-diameter relationship for dead (black curves) and living trees
(grey curves) for A. alba (plain lines) and P. abies (dashed lines). The
smoother indicated that past radial growth was lower for dead trees
than for living trees for both species, whatever the diameter value.

A. alba and P. abies respectively (Fig. 1). As a consequence,
we were not able to accurately decompose annual mortality
rate for diameter and growth classes for this diameter range.
For trees with DBH ≥ D0 we only obtained mortality rate
estimates as a function of diameter using National Forest In-
ventories and Cemagref permanent plot data. This should not
affect the quality of the mortality model for larger trees. In-
deed, competition, which affects growth, occurs principally for
small trees. Moreover, senescence, which is assumed to affect
the growth of all trees of the same age in the same way, is
taken into account through the diameter covariate, which can
be considered as a proxy for age.

2.4. Mortality rate integrating both DBH and past
radial growth for each species

2.4.1. Use of the Bayes formula to compute the combined
mortality rate

For smaller trees (with DBH < D0), we obtained the com-
bined mortality rate μDGjk = p(deadD<D0 |D j,Gk) as a function
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of the diameter class j and the growth class k using the Bayes’
formula and the prior probability of death for a tree with DBH
< D0 that we denoted μD<D0 = p(deadD<D0 ):

μDGjk = p(deadD<D0 |D j,Gk) =
p(Dj ,Gk |deadD<D0 )p(deadD<D0 )

p(Dj ,Gk)

=
p(Dj ,Gk |deadD<D0 )μD<D0

p(Dj ,Gk |deadD<D0 )μD<D0+p(Dj ,Gk |aliveD<D0 )(1−μD<D0 ) ·
(3)

We denoted R jk the following ratio of probabilities:

R jk = p(D j,Gk|deadD<D0 )/p(D j,Gk|aliveD<D0 ). (4)

The two terms of the ratio were expressed as functions of dDGjk

and nDGjk −dDGjk , the number of dead and living trees in diam-
eter class j and growth class k respectively (Eqs. (5) and (6)).
This led to simple expressions for the ratio of probabilities R jk

(Eq. (7)) and for the combined mortality rate μDGjk (Eq. (8))

p(D j,Gk |deadD<D0 ) = dDGjk/
∑

j,k

dDGjk (5)

p(D j,Gk|aliveD<D0 ) = (nDGjk −dDGjk )/
∑

j,k

(nDGjk − dDGjk ) (6)

R jk = (dDGjk

∑

j,k

(nDGjk − dDGjk ))/((nDGjk − dDGjk )
∑

j,k

dDGjk )

(7)

μDGjk = (R jkμD<D0 )/(R jkμD<D0 + (1 − μD<D0 )). (8)

2.4.2. Determination of the prior

To compute μDGjk we needed to determine μD<D0 =
p(deadD<D0 ), which is the prior probability of death for a tree
with DBH < D0 (Eq. (8)). We selected the trees with DBH
< D0 in the NFI data-sets and in the Cemagref permanent plots
which integrated diameter measures. We estimated μD<D0 us-
ing a Bayesian approach. Let yi be the event that individual
i with DBH < D0 survives (yi = 1) or dies (yi = 0) dur-
ing a time interval Yi (in years) with probability 1 − μ′D<D0

,
yi ∼ Bernoulli(yi|1 − μ′D<D0

). We expressed 1 − μ′D<D0
in func-

tion of the annual mortality rate μD<D0 :

μ′D<D0
= 1 − (1 − μD<D0 )Yi . (9)

We used a logit transformation for mortality rate:

logit(μD<D0 ) = λD<D0 (10)

and the prior for parameter λD<D0 was taken non-informative
with a large variance: λD<D0 ∼ Normal(λD<D0 |0, 1.0×106). We
then obtained a posterior distribution for parameter μD<D0 for
each species from which we computed the mean, the standard
deviation, and the 95% quantiles.

2.4.3. Two-dimensional Ayer’s algorithm to determine
diameter and growth bins

The mortality model given diameter and growth assumed
that mortality rate was decreasing on [0,D0) for diameter (cm)
and on [0, 8) for growth (mm year−1). We then used a modi-
fied two-dimensional Ayer’s algorithm to determine diameter
and growth bins that respected these two assumptions (Ayer
et al., 1955; Vieilledent et al., 2009). Our algorithm began
with arbitrarily small bin widths of 5 cm for diameter and
of 0.1 mm year−1 for growth. Diameter of all living and dead
trees was partitioned into bins j = 1, 2, . . . , qD and growth
was partitioned into bins k = 1, 2, . . . , rG. A corresponding
annual mortality rate for each bin μDGjk was estimated with
equation (8). For each couple ( j, k), we checked firstly that
μDGjk > μDGj+1,k and secondly that μDGjk > μDGj,k+1 . If the
first inequality considering DBH was not respected, bins were
expanded in regard to DBH: bin jk ←� bin jk + bin j+1,k and
data were re-binned: dDGjk ←� dDGjk + dDGj+1,k and nDGjk ←�

nDGjk +nDGj+1,k . If the first inequality was respected but the sec-
ond considering growth was not, bins were expanded in regard
to growth: bin jk ←� bin jk + bin j,k+1 and data were re-binned:
dDGjk ←� dDGjk + dDGj,k+1 and nDGjk ←� nDGjk + nDGj,k+1 . Each
time a bin was modified, the algorithm restarted from j = 1
and k = 1. The process was continued until a monotonic de-
creasing sequence was reached on [0,D0) for diameter and on
[0, 8) for growth.

The initial number of bins mDG,Start was equal to qD,Start ×
rG,Start = 135/5 × 8/0.1 = 2 160. When monotonicity was
achieved with a decrease of mortality on [0,D0) for DBH (cm)
and a decrease on [0, 8) for growth (mm year−1), the final num-
ber of bins mDG,Final could be between 1 (one mean mortality
rate for all trees with 0 ≤ DBH < D0 and 0 ≤ growth < 8) and
mDG,Start. Final bin width was also variable, going from 5 to D0

for DBH width and from 0.1 to 8 for growth width. Contrary
to classical parametric logistic approaches (Monserud, 1976;
Wunder et al., 2007), the semi-parametric model structure we
developed was not entirely specified a priori but was instead
determined from data and the number of parameters were flex-
ible and not fixed in advance.

2.5. Mortality-growth model

We were interested in comparing species behavior regard-
ing growth-dependent mortality for insights into species strate-
gies and successional dynamics. For each class of growth g of
width equal to 0.2 mm year−1, we computed the annual mor-
tality rate μGg :

μGg =
∫ qD

j=1

∫ rG

k=1
μDGjk p(DG jk∩g)djdk

=
∑qD

j=1

∑rG

k=1 μDGjk n jk∩g/(
∑qD

j=1

∑rG

k=1 n jk).
(11)
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Figure 2. Mortality-diameter semi-parametric model for A. alba and
P. abies. Models for A. alba (black lines and dots) and P. abies (grey
lines and triangles) are represented with posterior mean (—) and 95%
quantiles (- - -). Bar widths represent bins values obtained from mod-
ified Ayer’s algorithm and bar height represent maximum likelihood
estimates obtained within Ayer’s algorithm. Vertical lines on the DBH
axis indicate range of data for A. alba (black) and P. abies (grey).

3. RESULTS

3.1. Mortality-diameter relationship

Using NFI data and Cemagref plots, we were able to obtain
a mortality-diameter model. For both species, we observed a
U-shape mortality-DBH relationship with a minimum mortal-
ity rate D0 equal to 45 cm (Fig. 2). For the smallest diam-
eter class (DBH < 15 cm), P. abies had a higher mortality
rate (3.76%) than A. alba (2.75%). For high diameters (DBH
≥ 45 cm), P. abies had a higher mortality rate than A. alba
(Fig. 2) with a maximum mortality rate of 0.45% for P. abies
and 0.32% for A. alba in the biggest DBH class (Tab. II).

To compute the combined size-dependent and growth-
dependent mortality, we needed to estimate a prior mortality
probability for DBH < 45 cm. On this diameter range, P. abies
had a significantly higher annual mortality rate prior (1.49%)
than A. alba (1.38%) (Fig. 3).

3.2. Mortality-growth relationship

For both species, mortality rate was increasing as
growth was decreasing (Fig. 4). Fast growing individuals
(> 0.6 mm year−1) had a lower annual mortality rate (< 2%)
than slow growing individuals (Tab. II and Fig. 4).

For the same value of growth, P. abies had a higher mor-
tality rate than A. alba (Tab. II and Fig. 4). The difference
of mortality rate between the two species was increasing as

growth was decreasing with a mortality rate for growth infe-
rior to 0.2 mm year−1 of 18.42% for P. abies against 10.21%
for A. alba (Tab. II). We demonstrated that, in our context,
A. alba survived better at low growth rates than P. abies.

3.3. Size- and growth-dependent mortality model

The semi-parametric model allowed a flexible description
of mortality as a function of diameter and growth for DBH <
45 cm. With our method, we were able to differentiate growth-
related and size-related mortality on that range of diameter
(Fig. 5). For a given DBH class, a less vigorous tree with a
lower growth had a higher mortality rate than a more vigorous
tree with a higher growth (Fig. 5). The semi-parametric model
didn’t assume a strict model shape and allowed us to represent
the skewed shape of the mortality surface (Fig. 5).

The low number of data for large trees (DBH ≥ 45 cm)
(Fig. 1) didn’t permit a separation of growth-related mortal-
ity from size-related mortality. Because growth-related mor-
tality affects principally small sub-canopy trees susceptible to
competition, this should not affect the quality of the mortality
model for large trees. For large trees (DBH ≥ 45 cm), size-
related mortality referred both to irregular mortality and senes-
cence (Figs. 2 and 5).

4. DISCUSSION

4.1. A model combining size-dependent and growth-
dependent mortality

The mortality model we developed integrates both size-
dependent and growth-dependent mortality which are taken
into account through diameter and past radial growth co-
variates. Tree mortality increased with decreasing growth for
smaller trees (DBH < 45 cm) affected by competition. Mor-
tality had a U-shape relation with diameter accounting for
disturbance-related mortality and senescence.

Most mortality models published to date have focused on
one type of mortality. Some authors studied only carbon bal-
ance related mortality using growth as covariate (Bigler and
Bugmann, 2003; Dobbertin, 2005; Kobe and Coates, 1997;
Kunstler et al., 2005; Lin et al., 2001; Monserud, 1976;
Wyckoff and Clark, 2000; Wyckoff and Clark, 2002). A limi-
tation of this approach is that growth-mortality models alone
are not sufficient for a good description of mortality as dis-
turbances are not taken into account in the mortality process.
Secondly, in forest dynamics models, tree growth is often re-
lated to local resource availability such as quantity of light
(Courbaud et al., 2003), soil moisture or quantity of nutrients
(Korzukhin and Ter-Mikaelian, 1995; Lexer and Hönninger,
2001). But, resource availability may not be the limiting fac-
tor for growth and carbon balance. For older trees, senes-
cence mechanisms such as decreasing respiratory efficiency
and decreasing hydraulic conductance may limit growth. Such
mechanisms are not easily quantified and implemented in for-
est dynamics models. Adding a mortality-diameter relation
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Table II. Values of annual mortality rate given diameter or growth. The annual mortality probability associated to diameter class j is μD j and
the annual mortality rate given growth class g is μGg . For diameter class j, nD j is the total number of trees and dD j is the number of dead trees.
For growth class g, nGg is the total number of trees and dGg is the number of dead trees.

with an increasing mortality for DBH ≥ 45 cm allows tak-
ing into account mortality associated with senescence mech-
anisms. Other authors studied mortality due only to specific
disturbances such as rock fall, insects (Hansen et al., 2006),
snow damage (Fridman and Valinger, 1998; Peltola et al.,
1999) or windthrows (Canham et al., 2001) without consid-
ering growth-related mortality so that a tree with high growth
and a tree with low growth were not differentiated in terms of
mortality probability.

Some other models integrated both types of mortality. In the
1996 version of SORTIE model (Pacala et al., 1996), regular
mortality was growth-dependent and was combined to a fixed
background mortality rate of 1% assigned to both juvenile and
adult trees. Depending on the model version, irregular mor-
tality associated with severe disturbances such as windthrow
was added (Papaik and Canham, 2006). In the ForClim model
(Bugmann, 1994), mortality was divided into age-related mor-
tality, stress-induced mortality and disturbance-related mortal-
ity. In these cases, mortality models did not use specifically
collected data, but empirical data collected in other locations
or sensible estimates (Hawkes, 2000). In contrast, our method
allows an estimation of mortality rate combining both size-
dependent and growth-dependent mortality from field obser-

vations. It should be mentioned that site environmental factors
(such as topography, altitude, soil or climate) may modulate
the relationship between size, growth and mortality (Das et al.,
2008). The model described in this study only reflects average
site conditions but not local site conditions.

4.2. A flexible model making the most of available data

The semi-parametric approach we developed allowed us to
obtain a flexible representation of the two-dimensional and
highly skewed shape of mortality given growth and diameter.
Other authors have developed parametric regressions (such as
logistic regression) using permanent plot data which included
both growth (either directly or indirectly through competi-
tion indexes) and size to obtain synthetic mortality models in-
cluding regular and irregular mortality (Eid and Tuhus, 2001;
Fortin et al., 2008; Moore et al., 2004; Uriarte et al., 2004;
Wunder et al., 2007; Yao et al., 2001). Nevertheless, it has been
demonstrated that due to unbalanced data-sets from permanent
plots and to the highly skewed shape of mortality, parametric
models assuming a strict model shape may lead to biased mor-
tality estimates and wrong interpretations concerning species
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Figure 3. Small trees mortality prior (μD<D0 ) for A. alba and P. abies.
Prior probability distributions for A. alba (bold plain line) and P. abies
(thin plain line) are compared. Vertical plain line indicates the mean
and vertical dashed lines indicate 95% credible interval. For trees
with DBH < 45 cm, P. abies has an annual mortality rate significantly
higher than A. alba.

life-history traits differences (Lavine, 1991; Vieilledent et al.,
2009; Wyckoff and Clark, 2000). The semi-parametric model
we developed didn’t assume a strict model shape and is less
dependent on the distribution of the data points.

In order to parameterize classical logistic regressions for
mortality estimation, one requires large data-sets based on per-
manent plot survey with multiple censuses over long time pe-
riods (Hawkes, 2000; Wunder et al., 2007). To account for
growth, at least three censuses are needed to link mortality
observation between the second and third census to growth be-
tween the two first censuses. Monserud (1976) used data ob-
tained from 20–28 y of observations and Wunder et al. (2007)
used a permanent plot network initiated in the late 1940’s.
Such experimental devices with long-term data are rare. Some
authors have previously described methods using a reduced
sample of dead and living trees with growth measurements to
avoid the use of permanent plot data for growth-related mortal-
ity (Kobe et al., 1995; Wyckoff and Clark, 2000). We extended
the method to a multivariate mortality model including both
size and growth. As the mortality prior can be obtained from
bibliography or previous studies, the only data needed is a ran-
dom sample of dead and living trees with DBH and past radial
growth measures which can be used to obtain the inverse prob-
abilities and the ratio of probabilities detailed in Equations (3)
and (4). The method we propose is then simple and quick to
implement when no permanent plot data are available.
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Figure 4. Mortality-growth semi-parametric model for small trees
(DBH < D0) of A. alba and P. abies. Mortality estimates μGg for each
growth class g of range 0.2 mm year−1 were obtained integrating the
combined mortality rates μDG jk on all diameter classes j and growth
class intersections k ∩ g (see Eq. (11)). Mean posterior for A. alba
(black lines and dots) and P. abies (grey lines and triangles) are rep-
resented. Bar widths represent fixed bins values of 0.2 mm year−1 for
growth and bar height also represent the mean posterior. 95% credi-
ble intervals due to uncertainty on priors were too narrow to be repre-
sented on the graph. From this graph, we can see that for small trees
(DBH < 45 cm) at low growth (growth < 0.6 mm year−1), P. abies has
a higher mortality rate than A. alba.

4.3. A model which helps to understand and forecast
A. alba and P. abies dynamics

With our model, we were able to demonstrate that A. alba
was more resistant to low growth (<0.6 mm year−1) than
P. abies and that P. abies had a higher mortality rate than
A. alba for high diameter (DBH ≥ 45 cm). As small trees
are those receiving lower levels of light and having a lower
growth, the better resistance of A. alba to low growth can
be associated with its relative shade-tolerance compared to
P. abies. These results match the classical accepted dynamics
of mixed P. abies and A. alba stands which considers P. abies
as being the relative early-successional species (Schütz, 1969;
Wasser and Frehner, 1996). Early-successional plant species
are supposed to have higher fecundity, longer dispersal, faster
growth when resources are abundant, and slower growth
and lower survivorship when resources are scarce compared
to late-successional species (Rees et al., 2001). Such traits
contribute to the competition-colonization trade-off (Tilman,
1994) and to the successional niche mechanisms (Pacala and
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Figure 5. Multivariate mortality rate estimates for A. alba (a) and P. abies (b). Bins for diameter-classes and growth-classes were obtained with
the modified two-dimensional Ayer’s algorithm. Mortality model is independent of growth for DBH ≥ 45 cm with the only assumption that
mortality increases with diameter. For DBH < 45 cm, the model assumes that mortality decreases both with growth and diameter. Mortality
model combines size-dependent and growth-dependent mortality.

Rees, 1998; Rees et al., 2001) which are commonly pointed up
to explain species coexistence.

With regard to successional niche, previous studies have
shown that P. abies saplings had higher growth at full light
than A. alba (Grassi and Bagnaresi, 2001). Our results sug-
gest that this advantage may be compensated by a higher mor-
tality rate at low light for P. abies than for A. alba. With
regard to colonization-competition trade-off, P. abies is sup-

posed to have a higher fecundity and longer dispersal than
A. alba (Dovčiak et al., 2008; Sagnard et al., 2007). This col-
onization advantage may be balanced by a lower competitive
ability for P. abies than for A. alba when resources (typically
light) are scarce (Schütz, 1969; Wasser and Frehner, 1996). In
regard to our results, we can argue that P. abies colonization
advantage can also be compensated by a higher mortality rate
for high diameter which can be interpreted as a lower life-span
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due to lower resistance to external perturbations such as rock-
fall (Stokes et al., 2005), storms (Lundstrom et al., 2007) and
insect attack (Zolubas, 2003) or to an earlier senescence.

To conclude, we emphasize the advantages of the mortal-
ity model we developed as (i) it includes both size-related and
growth-related mortality (ii) making the most of the available
mortality data (iii) without assuming a strict model shape for
the mortality surface (iv) and allowing the accurate interpre-
tion of species life-histories. Therefore, the method we pro-
pose should be of value in helping to understand and forecast
forest community dynamics.
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