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Abstract
It is commonly accepted that species should move toward higher elevations and lati-
tudes to track shifting isotherms as climate warms. However, temperature might not 
be the only limiting factor determining species distribution. Species might move to 
opposite directions to track changes in other climatic variables. Here, we used an 
extensive occurrence data set and an ensemble modelling approach to model the 
climatic niche and to predict the distribution of the seven baobab species (genus 
Adansonia) present in Madagascar. Using climatic projections from three global circu-
lation models, we predicted species’ future distribution and extinction risk for 2055 
and 2085 under two representative concentration pathways (RCPs) and two dispersal 
scenarios. We disentangled the role of each climatic variable in explaining species 
range shift looking at relative variable importance and future climatic anomalies. Four 
baobab species (Adansonia rubrostipa, Adansonia madagascariensis, Adansonia perrieri̧  
and Adansonia suarezensis) could experience a severe range contraction in the future 
(>70% for year 2085 under RCP 8.5, assuming a zero- dispersal hypothesis). For three 
out of the four threatened species, range contraction was mainly explained by an in-
crease in temperature seasonality, especially in the North of Madagascar, where they 
are currently distributed. In tropical regions, where species are commonly adapted to 
low seasonality, we found that temperature seasonality will generally increase. It is, 
thus, very likely that many species in the tropics will be forced to move equatorward 
to avoid an increase in temperature seasonality. Yet, several ecological (e.g., equato-
rial limit, or unsuitable deforested habitat) or geographical barriers (absence of lands) 
could prevent species to move equatorward, thus increasing the extinction risk of 
many tropical species, like endemic baobab species in Madagascar.
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1  |  INTRODUC TION

Climate change has already modified the spatial distribution of tropical 
biodiversity (Chen et al., 2009; Fadrique et al., 2018; Feeley et al., 2016). 
Increasing temperatures, anomalous precipitation regimes (Anderson- 
Teixeira et al., 2013), and more frequent and severe extreme events 
(e.g., heatwaves, droughts and wildfires; Garcia et al., 2014) all pose sig-
nificant challenges to biodiversity by pushing species toward the limits 
of their climatic tolerances (Rodríguez- Castañeda, 2013). Temperature 
has been the main variable considered when studying biotic responses 
to climate change for several reasons. First, it is an easy to measure 
variable. The first reliable thermometers have been used to measure 
air temperature since the beginning of the 18th century (Fahrenheit, 
1724). Second, temperature generally decreases with elevation and 
latitude and has been historically used to define habitat types on Earth 
(FAO, 2010; Holdridge, 1947; von Humboldt, 1817). Third, temperature 
is a known determinant of species biology and distribution (Sentinella 
et al., 2020; Tewksbury et al., 2008). Fourth, temperature is strongly 
correlated to CO2 concentration in the atmosphere and is expected 
to significantly increase at the global scale in the future, in association 
with increasing CO2 emissions due to human activities (IPCC, 2014). As 
a consequence, it is commonly accepted that species will move toward 
higher elevations (i.e., upslope) and latitudes (i.e., poleward) to track 
shifting isotherms as the climate warms (Colwell et al., 2008; Lenoir 
et al., 2008; Lenoir & Svenning, 2015).

However, it has also been observed that species may go “against 
the flow” under the effect of climate change: toward lower elevations 
(i.e., downslope) and lower latitudes (i.e., equatorward) to find suitable 
climate conditions (Lenoir et al., 2010). These unexpected directional 
range shifts may involve several potential determinants, for example, 
indirect biotic response due to the combined effect of both climate 
warming and land- use change; changes in interspecific interactions 
such as competition release; sensitivity to other environmental gradi-
ents not conforming with upslope and poleward range shifts; physio-
logical or evolutionary adaptations; and random shifts due to stochastic 
ecological processes (Crimmins et al., 2011; Lenoir et al., 2010; Pinsky 
et al., 2013). Yet, studies reporting species range shifts in response to 
anthropogenic climate change usually focus on two geographical di-
mensions solely— latitude and elevation (Lenoir & Svenning, 2015)— 
and one single climatic dimension, namely mean annual temperature. 
Hence, these studies disregard other relevant climatic predictors such 
as changes in precipitation regime, water balance, or temperature 
seasonality, which may force species to shift downward in elevation 
(Crimmins et al., 2011; Lenoir et al., 2010). Given that, it is extremely 
important to account for additional climatic variables different from 
the mean annual temperature and consider other potential ecological 
processes that could explain species range shifts in multiple directions.

The most commonly used tools to predict current and future dis-
tribution of species under climate change from a set of observations 
and climatic predictors are correlative species distribution models 
(SDMs) (Elith & Graham, 2009; Foden et al., 2019; Guisan et al., 2013; 
Porfirio et al., 2014). The main outputs of these SDMs are maps of 
species potential distributions in the present and future. Nowadays, 

many easy- to- use software (the JAVA Maxent; Phillips et al., 2006) 
or libraries (e.g., “sdm” and “biomod2”; Naimi & Araújo, 2016; Thuiller 
et al., 2009) have been made available to easily derive such redistribu-
tion maps. Comparing present with future species distribution maps, 
one can assess species vulnerability to climate change by looking at 
species range shift, contraction, or expansion (Vieilledent et al., 2013). 
Surprisingly, conservation studies that use correlative SDMs to assess 
species vulnerability to climate change mostly do not disentangle the 
respective effect of predictor variables in explaining species range 
shift (Fourcade et al., 2018). Thus, they fail at explaining the possible 
underlying mechanisms behind such changes. For example, in an article 
studying the vulnerability of three baobab species to climate change in 
Madagascar, Vieilledent et al. (2013) showed that Adansonia suarezen-
sis H. Perrier, and Adansonia perrieri Capuron, will likely become extinct 
by 2085. However, the study does not analyze the respective role of 
each variable in explaining species range shift and does not suggest po-
tential mechanisms that could explain the species extinction. In addi-
tion, a recent study assessing the vulnerability of Madagascar endemic 
baobabs to future climate change also failed to explore the underlying 
mechanisms behind expected species range shifts (Wan et al., 2020).

To help fill this gap, we investigate here the specific role of a set of 
climatic variables in explaining shifts in species distribution associated 
with climate change. We chose the seven emblematic baobab species 
that can be found in Madagascar (Adansonia L. genus; Malvaceae fam-
ily) for this purpose. Six of the seven species are endemic to Madagascar 
(Adansonia grandidieri Baill., Adansonia madagascariensis Baill., A. perri-
eri, A. rubrostipa Jum. and Perr., A. suarezensis, and Adansonia za Baill), 
whereas the remaining species also occurs in the African continent: 
Adansonia digitata L. (Wickens, 2008). Each of the seven baobab spe-
cies are located in different regions of Madagascar, being adapted to 
different climates and could potentially have different responses to 
climate change. We gathered an extensive and unprecedented occur-
rence data set obtained from more than 15 years of field prospection 
and photo- interpretation of high- resolution satellite images. We used 
an ensemble modelling approach to model the climatic niche and to 
predict the distribution of these seven species. Using SDMs and cli-
matic projections, we assessed whether each species could experience 
range shift, contraction or expansion, and in which direction. Looking 
at the relative climatic variable importance and future climatic anom-
alies, we disentangled the role of each climatic variable in explaining 
species range shift. Based on species’ extinction risk, we made sug-
gestions to update the current baobab species conservation status. 
Finally, we attempted to generalize our results to other species in the 
tropics that should experience similar climatic anomalies in the future.

2  |  MATERIAL S AND METHODS

2.1  |  Presence and pseudo- absence data

We used photo- interpretation of very high- resolution QuickBird 
(61 cm resolution: most of the cases, especially for baobab identifica-
tion from the crown or by their projected shadow) and Spot5 (2.5 m 
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resolution: only in few specific cases, such as dense and homoge-
neous forests) satellite images available on Google Earth (http://
www.google.com/earth/ index.html; see Yu & Gong, 2012) to locate 
A. grandidieri and A. suarezensis individual trees in Madagascar. To 
validate occurrence data from photo- interpretation, ground- truth 
verifications were conducted identifying baobabs trees by the basis 
of their crown size, shape, and color during the flowering period (see 
Vieilledent et al., 2013). Ground- truth verification was conducted 
during the flowering period to facilitate species identification and 
validation of species occurrence data (see Vieilledent et al., 2013 for 
further details). For the other five Malagasy baobab species (A. digi-
tata, A. madagascariensis, A. perrieri, A. rubrostipa, and A. za) we used 
an extensive presence only data set available, thanks to prospective 
fieldwork (2000 to 2015) from the Cirad Madagascar team. During 
fieldwork, baobab trees were identified at the species level and geo-
referenced with a GPS to generate a unique occurrence data set for 
all Malagasy baobab species.

Our raw data set contains 137,285 occurrence records encom-
passing all seven Malagasy baobab species. First, we removed all 
points with coordinates outside Madagascar (only for A. digitata 
because occurrence records were also collected in Comoro islands). 
Then, for each of the seven species separately, we created a grid 
with 1- km² cell resolution covering the Madagascar territory and 
identified all cells that had at least one occurrence record for the 
focal baobab species. Finally, we removed all cells and respective 
presence observation data with incomplete bioclimatic information. 
For instance, the initial set of 1686 occurrence records available for 
A. suarezensis was reduced to a total of 170- pixel units of 1- km2 each 
(Table S1 for all baobabs species). Our observation sample size was 
sufficient to perform SDMs because the recommended minimum 
sample size (see van Proosdij et al., 2016) for narrow- ranged spe-
cies (as for A. perrieri— 21 1- km2 grid cells) is as low as 3 while it is 
recommended to have at least 13 occurrence points for widespread 
species (as for A. grandidieri or A. za— 3772 and 460 1- km2 grid cells, 
respectively). We randomly sampled 10,000 pseudo- absences (i.e., 
virtual absence data that are drawn to be representative of the 
environmental variability in the study area; Barbet- Massin et al., 
2012) across all Madagascar for each species to constitute a pres-
ence/pseudo- absence data set. By using pseudo- absences, we used 
both the presence and pseudo- absence information to predict spe-
cies’ habitat suitability and distribution, optimizing spatial and en-
vironmental discrimination (Senay et al., 2013). Consequently, we 
aimed to have a good representativity of the climate variability in 
Madagascar and to be able to compute a relative probability of the 
presence across the country.

2.2  |  Bioclimatic data

We used current (~1950– 2000) and future (2055 and 2085) cli-
matic data at 30 arc- seconds resolution (about 1 km at the equator) 
over the entire spatial extent of Madagascar. These data are freely 
available on MadaClim (https://madac lim.cirad.fr/). The MadaClim 

website provides climatic data for Madagascar obtained from the 
WorldClim (http://world clim.org/biocl im/) and CGIAR- CCAFS cli-
mate data portal (http://www.ccafs - clima te.org/). We selected four 
bioclimatic variables (Hijmans et al., 2005) to model species distribu-
tion, which were weakly correlated among each other and easy to 
interpret with regard to baobab species distribution. Three of them 
were previously selected via a principal component analysis among 
all the 19 WorldClim bioclimatic variables (following Vieilledent et al. 
(2013): (1) mean annual precipitation— prec (mm/year); (2) mean an-
nual temperature— tmean (°C); (3) temperature seasonality— tseas 
(sd × 1000⁰C). In addition, we included a synthetic variable reflecting 
(4) climatic water deficit— cwd (mm). The cwd variable was computed 
from monthly precipitation (preci) and potential evapotranspiration 
(peti) using the following formula (Equation 1):

Potential evapotranspiration is defined as the evaporation 
amount that would occur if a sufficient water source was available. 
We used the Thornthwaite formula (Thornthwaite, 1948) to com-
pute the monthly potential evapotranspiration. The four selected 
bioclimatic variables are widely used (i) to define biomes globally, 
known as Holdridge Life Zones System (Holdridge, 1947) and (ii) as 
proxies for other bioclimatic variables. For instance, the mean annual 
temperature (tmean) is a proxy for solar radiation and temperature 
stress (Haigh, 2007). Additionally, the mean annual temperature may 
indicate potential losses of plant productivity (Hatfield & Prueger, 
2015). The temperature seasonality (tseas) can be interpreted as a 
proxy for the growing season (Hatfield & Prueger, 2015), whereas 
the annual precipitation (prec) is a proxy for potential water avail-
ability (Amissah et al., 2018). Finally, the climatic water deficit (cwd) 
can be indicative of water stress and drought periods (Fayolle et al., 
2014; Stephenson, 1990).

For future climate data (2055 and 2085), we selected three dif-
ferent global circulation models (GCMs) from the World Climate 
Research Programme— CMIP5 (i.e., NorESM1- M, GISS- E2- R, and 
HadGEM2- ES) under two representative concentration pathways 
(RCPs: carbon dioxide emission scenarios) (i.e., RCP 4.5 and 8.5). 
The RCP 8.5 scenario is characterized by high concentration and in-
creasing CO2 gas level emissions (Riahi et al., 2007; van Vuuren et al., 
2011) and can be considered the most likely emission scenario in 
the absence of effective mitigation policies regarding CO2 emissions, 
whereas RCP 4.5 is known as the “mitigation scenario” because of 
projected reduction of CO2 gas level emissions (van Vuuren et al., 
2011). A recent discussion has been brought in the literature affirm-
ing that RCP 8.5 is a problematic scenario for near- term (2030– 2050) 
emissions and indicates that RCP 4.5 is more likely than RCP 8.5 
(Hausfather & Peters, 2020). Despite this recent discussion, we pro-
jected our main results under RCP 8.5 because (i) we projected for 
long- term climate change (i.e., 2085) where projections presented 
by RCP 8.5 in 2100 are more probable than RCP 4.5 (Schwalm et al., 
2020a); (ii) historical cumulative CO2 emissions from 2005 to 2020 

(1)cwd = −

∑

i

min(preci − peti , 0)

http://www.google.com/earth/index.html
http://www.google.com/earth/index.html
https://madaclim.cirad.fr/
http://worldclim.org/bioclim/
http://www.ccafs-climate.org/
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are more in accordance with RCP 8.5 than RCP 4.5 (Schwalm et al., 
2020b); (iii) RCP 4.5 underestimate biotic feedback (e.g., changes in 
soil dynamics, forest fires frequency and severity, permafrost thaw), 
which accelerates warming, further supporting RCP 8.5 (Schwalm 
et al., 2020b); (iv) in our study, we used RCP 8.5 for the sake of risk 
assessment and not to compare RCPs’ effectiveness; however, RCP 
4.5 projected temperature by 2100 is 1.7– 3.2°C, whereas for RCP 
8.5 is 3.2– 5.4°C (Fuss et al., 2014). As a consequence, the outputs of 
RCP 4.5 in our study are presented in the supplementary material.

2.3  |  Species distribution modeling: statistical 
algorithms, model performance, and importance of 
bioclimatic variables

We selected four statistical algorithms to model the bioclimatic niche 
and distribution of the seven studied baobab species: generalized 
linear models (GLMs), generalized additive models (GAMs), random 
forests (RFs), and Maxent. Selection of algorithms included standard 
regression models, such as the parametric GLM and the nonpara-
metric GAM, classification tree (RF), and maximum entropy approach 
(Maxent). We aimed to quantify the output uncertainty and generate 
a gradient from robustness (GLM and GAM) to complex algorithms, 
that is, RF and Maxent (Elith & Graham, 2009). The uncertainty quan-
tification of predictive modeling follows the premise of the ensemble 
modelling approach (Araújo & New, 2007), which enables a consen-
sus identification among all forecasts and the exploration of the full 
breadth of intermodal variability (Kujala et al., 2013).

As we used two regression models (GLM and GAM) and two 
machine learning approaches (RF and Maxent) to fit SDMs, the in-
clusion of 10,000 pseudo- absence points (background points for 
Maxent algorithm) is advised for better SDM outputs to obtain more 
accurate results (Barbet- Massin et al., 2012). We randomly split our 
presence/pseudo- absence data set using 70% for model calibra-
tion (training data- subset) and 30% for model validation (testing 
data- subset) to evaluate the predictive performances of our SDMs 
(Hijmans, 2012). We repeated the cross- validation procedure five 
times. Model performance in predicting species presence- absence 
was estimated using four different and complementary metrics: 
Area Under the Receiving Operating Characteristics Curve (AUC); 
True Skills Statistics (TSS); Sensitivity (Sen); and Specificity (Spe; 
Liu et al., 2011). We, thus, calculated the mean value of AUC and 
TSS metrics across the five testing data- subsets obtained from the 
cross- validation procedure for each selected algorithm. By doing this 
we were able to describe the modelling performance in predicting 
species presence- absence. We also computed AUC and TSS metrics 
across the full data set.

The AUC computes the model probability to rank a randomly 
chosen present site instead of a randomly absent site (Liu et al., 
2011; Pearce & Ferrier, 2000) and is commonly used as an accuracy 
index for SDMs using ensemble modelling approaches (Hao et al., 
2019). It is a threshold- independent index, and it is also indepen-
dent to prevalence (Allouche et al., 2006), which is the proportion 

of samples representing species presence (McPherson et al., 2004). 
If AUC values are ≥0.9, the model is commonly considered as highly 
accurate (Thuiller et al., 2009). The TSS metric is a threshold- 
dependent index (Liu et al., 2011) and is computed with a probability 
threshold maximizing its values. TSS values range from −1 to 1, and 
accurate models (correctly predicting both presences and absences) 
lead to values close to 1 (Thuiller et al., 2009). The TSS index is equal 
to Sensitivity + Specificity − 1. Sensitivity is the probability of cor-
rectly predicting a presence, whereas specificity is the probability 
of correctly predicting an absence (Liu et al., 2011). As well as the 
AUC index, TSS is not sensitive to prevalence (Allouche et al., 2006; 
Lawson et al., 2014), so we used both accuracy indexes to evaluate 
SDM outputs for rare (such as A. perrieri) or abundant (such as A. 
grandidieri) baobab species.

To evaluate the performance of the ensemble model based on 
committee averaging, we used three previously mentioned met-
rics: TSS, Sen, and Spe, following Araújo and New (2007). We pre-
viously defined an evaluation threshold using the accuracy index 
TSS (i.e., minimum score of 0.6 or 60%) to (i) remove “bad algo-
rithms/models,” (ii) build our ensemble model, (iii) test and evaluate 
the ensemble model forecasting capability (i.e., predicting species 
presence- absence), and (iv) make the binary transformation for the 
committee averaging computation (Thuiller et al., 2009).

For each statistical algorithm, we calculated the relative variable 
importance among the four studied bioclimatic variables selected for 
the SDMs. The computation principle follows the one used for RFs, 
where one bioclimatic variable is shuffled over the full data set or the 
testing data- subset. To compute variable importance (I), the model 
prediction is calculated in this shuffled data set, and a correlation 
(Pearson's correlation) is computed between baseline predictions 
(predref) and the shuffled predictions (predshuffled; see Equation 2).

We, thus, generated a rank according to the variable importance 
over the four statistical algorithms for each species. The rank was 
defined by calculating the mean obtained from 6 model runs (5 runs 
from the testing data- subset and 1 run from the full data set). The 
rank with higher mean values indicates which bioclimatic variable 
is more important to explain the species distribution. We used the 
Biomod2 R package (Thuiller et al., 2009) to generate the SDMs.

2.4  |  Current species distribution, climatic 
niche, and elevational range

For each species and each modelling algorithm, predicted prob-
abilities of occurrence during the current period were binary trans-
formed (0 for species absence and 1 for species presence) using the 
probability threshold maximizing TSS. Then, the current species 
distribution area (SDAp in km²) was defined as the set of 1- km2 pix-
els where two out of the four modelling algorithms predicted the 
presence of the focal species. When only one algorithm out of the 

(2)I = 1 − cor(predref, predshuffled)
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four predicted a presence for a given species, it was considered as 
uncertain. The species was considered absent when none of the four 
algorithms predicted a presence.

To characterize each species bioclimatic niche, we randomly sam-
pled 1000 points in the current species distribution area and com-
puted the density (i.e., frequency), mean values, and 95% quantiles for 
each of the four studied bioclimatic variables, as well as for elevation. 
Elevation data in Madagascar was obtained from the Shuttle Radar 
Topography Mission 90 m Digital Elevation Data available from the 
CGIAR- CSI GeoPortal. Elevation data was aggregated at 1 km reso-
lution and is also available for download on the MadaClim website.

2.5  |  Ensemble forecasting and future species 
distribution

To predict species distribution areas in the future, we used an en-
semble forecasting approach (Araujo & New, 2007). For each of the 
two RCPs separately (RCP 4.5 and RCP 8.5), we combined climatic 
projections obtained from the three different GCMs (NorESM1- M, 
GISS- E2- R, and HadGEM2- ES) and across the four modelling algo-
rithms (GLM, GAM, RF, and Maxent). We, thus, obtained, for each 
species under each RCP and for each year (2055 and 2085), 12 maps 
of the future probability of the presence. Again, the probability of 
presence was converted into binary data (0 for species absence and 
1 for species presence) using the same probability threshold, which 
maximizes TSS during current conditions. Species distribution area 
in the future (SDAf) was defined as the set of 1- km2 pixels where 
most projections (6 out of 12) predicted the presence of the focal 
species. When less than 6 models out of the 12 predicted a pres-
ence, the species presence in the future was considered uncertain. 
The species was considered absent in the future when none of the 
12 projections predicted a presence.

When predicting future range maps under each RCP for 2055 
and 2085, we also considered two contrasting dispersal hypotheses, 
with the reality likely to fall in between. The full- dispersal hypoth-
esis considers the possibility for all baobab species to colonize new 
climatically favorable sites outside the current species distribution 
range. The zero- dispersal hypothesis considers the impossibility for 
baobab species to naturally colonize new climatically favorable sites 
outside the current species distribution range. This can be due to 
unsuitable conditions (other than climate, such as land use) outside 
the current species distribution area or to that baobab species may 
not be able to disperse seeds due to geographical barriers or in the 
absence of animal dispersers (see Vieilledent et al., 2013).

2.6  |  Species range shift and vulnerability to 
climate change

To evaluate the effect of climate change and the vulnerability of 
the seven Malagasy baobab species, we calculated the percent-
age of area change between the future (SDAf) and present (SDAp) 

distribution range (in km²). To compute SDAf, SDAp, and mean eleva-
tional shifts, we extracted all presence points indicated as “presence” 
by the ensemble modelling and calculated the changes for each of 
the investigated future scenarios (mean, 95% quantiles interval, and 
percentage of area change in km²). Focusing on the year 2085, under 
RCP 8.5 for the full- dispersal and zero- dispersal scenarios, we sug-
gested updates for baobabs conservation management strategies 
given their future distribution and vulnerability to climate change 
according to the International Union for Conservation of Nature Red 
List (IUCN, 2012a). Finally, we calculated potential latitudinal and 
elevational species range shifts by extracting 1,000 random points 
inside each species distribution range projected for the present and 
the future (2055 and 2085), under both RCPs 4.5 and 8.5 scenarios 
and for the full- dispersal hypothesis.

3  |  RESULTS

3.1  |  Range contraction and vulnerability of 
baobab species to climate change

For all seven baobab species we obtained high TSS values for both 
the model cross- validation (Table S2) and the ensemble model (Table 
S3). For the ensemble model, the TSS was ≥0.83 for all the species 
except for A. za, for which the TSS was equal to 0.67 due to a rela-
tively lower specificity (Table S3). High TSS values indicate that the 
models can then be confidently used to predict the vulnerability of 
species to climate change. Four baobab species are expected to be 
highly vulnerable to climate change under RCP 8.5, whereas for RCP 
4.5 three species are expected to be highly vulnerable. A. perrieri 
and A. suarezensis might experience a complete range loss modelled 
by 2085 (under RCPs 4.5 and 8.5), and could face extinction, under 
both the full-  and zero- dispersal hypothesis (Figure 1; Table S2; 
Table 1; Table S4). Still, under RCP 8.5, A. madagascariensis and A. 
rubrostipa could experience a contraction in modelled suitable range 
by 2085 and thus might be threatened by extinction, under both 
the full-  (≥−32% area) and zero- dispersal hypothesis (≥−71% area). 
The three other baobab species modelled under RCP 8.5 (A. za, A. 
grandidieri, and A. digitata) are expected to be resilient to climate 
change (Figure S1). These species might experience a small range 
contraction (down to −3%) under the zero- dispersal hypothesis and 
a strong range expansion (from +118% for A. za up to +300% for 
A. grandidieri and A. digitata) when modelled under the full- dispersal 
hypothesis (Table 1). Under RCP 4.5 and zero- dispersal hypothesis, 
A. madagascariensis is predicted to lose 8% of its current distribu-
tion area, indicating that the species might not be threatened (Figure 
S2). The projections under RCP 4.5 and full- dispersal hypothesis 
also indicated a strong- range expansion from +78% for A. za up to 
+268% for A. grandidieri and A. digitata (Figure S2; Table S4). Among 
these three species, only A. digitata is expected to contract its mod-
elled suitable range by 2085 under zero- dispersal hypothesis: −20% 
(Figure S2). Both A. grandidieri and A. za might not be affected ac-
cording to this predictive scenario.
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3.2  |  Baobab species range shift in 
latitude and elevation

Among the four vulnerable baobab species, A. suarezensis and A. per-
rieri are expected to contract their range equatorward in 2085 under 
RCP 4.5 and for the full- dispersal hypothesis (both species are ex-
pected to go extinct under RCP 8.5 whatever the dispersal hypothesis). 
A. madagascariensis is also expected to move equatorward, whereas 
A. rubrostipa is expected to move poleward under RCP 8.5 and full- 
dispersal hypothesis (Figures 1, 2). For the three resilient species (A. za, 
A. grandidieri, and A. digitata), their distributional ranges should expand 
equatorward (A. za), poleward (A. digitata), or in both directions for A. 
grandidieri under RCP 8.5 and the full- dispersal hypothesis (Figure S1). 
Regarding shifts in elevation, all baobab species are expected to shift 
upward in the future (from +100 m for A. za to +351 m for A. rubrostipa; 
Figure 2 and Figure S3) when considering the full- dispersal hypothesis 

and scenario RCP 8.5 (except for A. perrieri and A. suarezensis where we 
considered RCP 4.5). When considering RCP 8.5 and the zero- dispersal 
hypothesis, all threatened baobab species are expected to shrink their 
distribution upward (Figure 2; Table 1). Under RCP 4.5 for 2085, bao-
babs are expected to remain at the current elevational gradient or to 
move upward until 2085 (Figure S4). The potential redistribution of 
these species in 2085 and RCP 4.5 indicates that the A. digitata and 
A. rubrostipa might move poleward, whereas the other species are ex-
pected to remain in similar latitudes in the future (Figure S4).

3.3  |  Climatic gradients and future climatic 
anomalies in Madagascar

We identified four main climatic gradients in Madagascar (Figure 3) 
that are important to subsequently interpret species distribution on 

F I G U R E  1  Species range contraction 
under climate change for the four 
threatened baobab species under RCP 
8.5. The four species are Adansonia 
madagascariensis, Adansonia perrieri, 
Adansonia rubrostipa, and Adansonia 
suarezensis (one species per row). (a, e, i, 
m) Occurrence points over Madagascar 
elevation map (elevation in m); (b, f, j, n) 
Current predicted species distribution. 
Legend indicates the number of models 
(0– 4) predicting the species presence; 
(c, g, k, o) Projected species distribution 
in 2085 under scenario RCP 8.5 and the 
full- dispersal hypothesis. Legend indicates 
the number of models (0– 12) predicting 
the species presence; (d, h, l, p) Projected 
species distribution in 2085 under 
scenario RCP 8.5 and the zero- dispersal 
hypothesis. Legend indicates the number 
of models (0– 12) predicting the species 
presence. For the distribution maps, the 
species is assumed to be present (green 
areas) when a majority of models predicts 
a presence (votes ≥ 2 in the present, 
and ≥ 6 in the future). The species is 
considered absent (gray areas) when no 
model (votes = 0), or a minority of models 
(votes < 2 in the present, and <6 in the 
future), predicts a presence. Maps for A. 
perrieri and A. suarezensis, two species 
distributed at the extreme North of 
Madagascar, have been zoomed in (black 
squares) [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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the island. The first gradient shows a decrease in the mean annual tem-
perature with elevation. The second one shows an increase in tempera-
ture seasonality associated with higher latitude (lower seasonality at 
the North, toward the Equator, higher seasonality at the South, toward 
the South Pole). The third gradient shows a decrease in annual pre-
cipitation from East to West associated with dominant Eastern winds 
and orographic precipitation (higher precipitation in the East). Finally, 
the fourth gradient shows an increase in the climatic water deficit from 
East to West due to the combining effects of precipitation and tem-
perature. Computation of future climatic anomalies in 2085 under RCP 
8.5 shows a general increase in the mean annual temperature over the 
whole Madagascar (from +2.5 to +4.0°C), with a stronger increase in 
the inner- land than on the coast. Temperature seasonality should also 
generally increase over the whole Madagascar, especially at the North 
of the island where the temperature seasonality anomaly should reach 
up to +0.3°C. Precipitation should generally decrease over the island 
(from 0 to −300 mm/year) with a stronger decrease in the North- East. 
Associated with the general increase in temperature and decrease in 
precipitation, the climatic water deficit should generally increase (from 
0 to +1500 mm/year) over the island and should be stronger in the 
Western part of Madagascar (>500 mm/year).

3.4  |  Importance of each bioclimatic variable in 
explaining species redistribution

For A. madagascariensis, A. perrieri, and A. suarezensis, three out of 
the four potentially threatened baobab species in 2085 under RCP 

8.5, the most important variable for explaining species distribu-
tion and thus redistribution was temperature seasonality (Figure 4 
and Table 2). These three species are currently distributed in the 
Northern part of Madagascar (Figure 1) and might experience, by 
2085 under RCP 8.5, a significant increase in temperature seasonal-
ity (from +0.113 to +0.148°C) inside their current distribution range 
(Figures 1 and 4, Table S5). For the fourth threatened species (A. 
rubrostipa), the most important variable was climatic water deficit 
(Table 2). This species could experience, by 2085 under RCP 8.5, a 
strong increase in climatic water deficit inside its current distribu-
tion range (+870 mm/year; Figures 1, 3, and 4). The second most im-
portant variable for the four threatened species were either annual 
mean temperature (A. madagascariensis), mean annual precipitation 
(A. rubrostipa and A. suarezensis), or climatic water deficit (A. perrieri).

For A. grandidieri, and A. za, two out of the three nonthreat-
ened baobab species under RCP 8.5 in 2085, the most important 
variable for explaining these species distributions and redistribution 
was mean annual precipitation (Figure 4 and Table 2). Mean annual 
precipitation should not significantly change (from −31 to −70 mm/
year) inside the current distribution range of A. grandidieri and A. za 
(Figures 3, 4, and Table S5), which are two species already adapted to 
dry climate (precipitation <1000 mm/year, Figure S5; Table S5). The 
second most important variable for these two species was annual 
mean temperature, which is expected to significantly increase inside 
the two species’ distribution range in the future (+3.5°C, Figure 3; 
Table S5), although not affecting their distribution (Figure 1). For A. 
digitata, the third nonthreatened species, the two most important 
variables were temperature seasonality (+0.87°C) and the climatic 

TA B L E  1  Baobabs’ vulnerability to climate change and elevational range shift in 2085 under scenario RCP 8.5

Baobab species
IUCN status

SDAp 
(km²)

Current mean 
elevation (m)

Dispersal 
hypothesis

SDAf 
(km²)

Future mean 
elevation (m)

Change 
SDAp f (%)

IUCN updated 
status

Adansonia digitata Not 
assessed by IUCN

47,872 76 Full 194,447 195 +306 NTa 

Zero 47,017 77 −2

Adansonia grandidieri 
Endangered A2ca 

27,651 135 Full 118,907 365 +330 EN A2cb 

Zero 27,591 135 0

Adansonia madagascariensis 
Near threatened

92,311 105 Full 62,881 263 −32 EN A3c

Zero 26,878 102 −71

Adansonia perrieri Critically 
endangered C2a(i)

14,872 377 Full 0 Extinct −100 CR C2a(i) + A3C

Zero 0 Extinct −100

Adansonia rubrostipa 
Least concern

74,194 77 Full 44,833 428 −40 EN A3c

Zero 11,488 82 −85

Adansonia suarezensis 
Endangered B1ab 
(i,ii,iii,iv,v) + B2ab 
(i,ii,iii,iv,v)

3347 194 Full 0 Extinct −100 CR B1ab + B2ab

Zero 0 Extinct −100

Adansonia zaLeast concern 170,625 265 Full 372,134 365 +118 Least concern

Zero 166,254 271 −3

Note: We calculated the species distribution area (km²) in the present (SDAp) and future (SDAf) to describe the change in the species distribution area 
(Change SDAp SDAf %) according to two dispersal hypotheses (full-  and zero- dispersal). See IUCN Red List categories and criteria, version 3.1, second 
edition | IUCN Library System for criteria explanation.
aIUCN criteria suggested for Madagascar.
bIUCN status defined by populational aspects for the referred species once our models did not predict vulnerability for this species.
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water deficit (+680 mm/year). These two variables are expected to 
increase inside the species distribution range in the future (Figures 
3, 4, and Table S5), although not affecting its distribution.

4  |  DISCUSSION

4.1  |  Vulnerability of baobab species to climate 
change and conservation status

We showed that four out of the seven Malagasy baobab species are 
expected to experience a strong- range contraction under the effect 
of climate change (>70% for year 2085 under RCP 8.5 and the zero- 
dispersal hypothesis) and could be strongly threatened with extinc-
tion according to our predictive scenarios. These four species are A. 
madagascariensis, A. perrieri, A. suarezensis, and A. rubrostipa. Among 
these four species, A. perrieri and A. suarezensis could face a com-
plete loss of their habitat by 2085 due in particular to an increase in 
the temperature seasonality in the future. The three other Malagasy 
baobab species, A. grandidieri, A. za, and A. digitata did not indicate 

any significant range contraction when modelled under climate 
change scenarios, except for A. digitata, which might reduce its mod-
elled distribution by 20% in 2085 under RCP 4.5 (Figure S2). For A. 
grandidieri and A. za, this resilience can be easily explained. A. za is a 
generalist species that can be found in a broad range of climatic con-
ditions and has a large distribution over Madagascar (Figures S1, S5). 
For A. grandideri, while it has a much narrower climatic niche than A. 
za and can be considered as a specialist species, it is already adapted 
to hot and dry climates (Figure 4, Figures S1 and S5). Conversely, 
we did not find a simple explanation for the resilience of A. digitata 
under RCP 8.5 in 2085. Temperature seasonality and climatic water 
deficit (which are expected to increase in the future, Figure 3) were 
the most important climatic variables in explaining the distribution 
of this species (Figure 4). We hypothesize that the potential combi-
nation of the four climatic variables (which are rather close in terms 
of importance, Table 2) determines the large suitable habitat for the 
species in the future and its predicted resilience to climate change 
(Figure S1).

These results are in line with those obtained by Vieilledent 
et al. (2013) who have previously demonstrated, with different 

F I G U R E  2  Change in elevation and latitude for the most threatened baobab species. We randomly sampled 1000 points inside the 
species predicted occurrence area in the present and in the future (due to the extremely reduced distribution area for Adansonia perrieri and 
Adansonia suarezensis, we only sampled 416 and 105 points, respectively for year 2085, and another 15 points for A. suarezensis in 2055). For 
Adansonia madagascariensis and Adansonia rubrostipa, we considered the scenario RCP 8.5 and the full- dispersal hypothesis. Under RCP 8.5, 
both A. perrieri and A. suarezensis became extinct in 2055 and 2085. As a consequence, we used RCP 4.5 to show change in elevation and 
latitude for these two species. (a, b) A. madagascariensis could migrate to higher elevation under climate change scenarios for 2055 and 2085 
and also change its latitudinal range to lower latitudes (i.e., equatorward) in 2085. (e, f) A. rubrostipa is expected to move to higher elevations 
and shift its latitudinal range to higher latitudes, that is, poleward. (c, g) Both A. perrieri and A. suarezensis could shift their range to more 
elevated areas. (d) A. perrieri might shift its range toward lower latitudes, that is, equatorward. (h) A. suarezensis is expected to retain its niche 
at lower latitudes [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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statistical models and IPCC climate scenarios, that both A. perrieri 
and A. suarezensis should become extinct by 2085 due to climate 
change, and that A. grandidieri should not be vulnerable to climate 
change. In a recent study, Wan et al. (2020) found contradictory 
results to ours: a resilience of A. perrieri and A. suarezensis, and a 
vulnerability of A. za to climate change. However, these conclu-
sions were taken by using a much smaller data set (245 occur-
rence points distributed among the six endemic Malagasy baobab 
species) than ours (4830 in total, see Table S1). In addition, their 
statistical approach was very limited in comparison to ours. Wan 
et al. (2020) used only one algorithm (Maxent), whereas we used 
four algorithms for both the ensemble modelling and the fore-
casting approach. In particular, the vulnerability of A. za to climate 
change found by Wan et al. (2020) seems to be in contradiction 
with its known biology and distribution as a generalist species 
(Figures S1, S2, S5, and Table S5).

In light of these results, we recommend updating the IUCN 
conservation status for the four threatened baobab species 

(Table 1) based on the risk assessment under RCP 8.5. We base 
our recommendations on the IUCN Red List Categories and 
Criteria version 3.1 (IUCN, 2012b). We recommend updating A. 
madagascariensis from “Near Threatened” to “Endangered A3c” 
(population reduction ≥50% in the future). For A. suarezensis, we 
recommend updating the conservation status from “Endangered 
B1ab + B2ab” to “Critically Endangered B1ab + B2ab” (complete 
extent of occurrence loss by 2085). For A. perrieri, we recommend 
updating the conservation status from “Critically Endangered 
C2a(i)” to “Critically Endangered C2a(i) + A3c” (few mature in-
dividuals and potential extinction in the long term). Finally, for 
A. rubrostipa, we recommend updating the conservation status 
from “Least Concern” to “Endangered A3c” (>85% habitat loss in 
2085). Climate change is not the only threat to Malagasy bao-
bab species. The seven baobab species are also severely threat-
ened by habitat loss associated with the rampant deforestation 
in Madagascar (Vieilledent et al., 2018), which prevents species 
from regenerating.

F I G U R E  3  Spatial variability of the climatic variables in Madagascar and map of the future climatic anomalies. The four climatic 
variables used to perform the species distribution models were considered: (a, e) annual mean temperature (Temperature in °C × 10); (b, f) 
temperature seasonality (T. seasonality, standard deviation of monthly temperatures × 1000); (c, g) annual mean precipitation (Precipitation 
in mm/year); (d, h) climatic water deficit (mm/year). Climatic anomalies (e– h) were computed as the difference between the mean of future 
climatic data in 2085 (2070– 2100) and present (1970– 2000) climatic data. Mean future climatic data in 2085 were computed from three 
global circulation models (NorESM1- M, GISS- E2- R, and HadGEM2- ES) under RCP 8.5. Four climatic gradients are well visible in Madagascar: 
(i) a North- South temperature seasonality gradient associated with latitude (low seasonality at the North, equatorward); (ii) a decrease 
in precipitation from East toward West Madagascar due to dominant Eastern winds and orographic precipitation (higher precipitation in 
the East); (iii) East- West water- deficit gradient due to combining effect of both precipitation and temperature; and (iv) a decrease in mean 
temperature in more elevated areas. Temperature seasonality should increase for the whole Madagascar. This increase will be particularly 
important in the North of Madagascar (> +150) where seasonality is currently low. A general increase in temperature (> +3°C) is expected 
in 2085 over Madagascar with climate change, with a higher increase in the inner land than on the coast. All Madagascar should experience 
a decrease in precipitation. Decrease in precipitation is expected to be stronger in the East (between −150 and −300 mm/year) and a strong 
increase in the climatic water deficit [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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4.2  |  Species range shifts in latitude and elevation 
under climate change

We have shown in our study that temperature seasonality was the 
most important variable at explaining species distribution for three 

out of the four threatened Malagasy baobab species. These three 
species (A. madagascariensis, A. perrieri, and A. suarezensis) are cur-
rently distributed in the Northern part of Madagascar, close to the 
Equator line, where the seasonality is lower. These three baobab 
species might experience, by 2085 under RCP 8.5, a strong increase 

F I G U R E  4  Comparison of current (blue) and future (green) bioclimatic conditions experienced by each species within the current extent 
of their respective geographical ranges. We selected only the two most important climatic variables determining species distribution. Left 
column (panels a, c, e, g, i, k, m) shows the first most important variables; Right column (panels b, d, f, h, k, l, n) shows the second most 
important variables. Horizontal axis represents one of the four bioclimatic variables: mean annual temperature (temp— °C × 10), temperature 
seasonality (°C, standard deviation [sd] × 1000), mean annual precipitation (mm/year), and climatic water deficit (mm). Vertical axis shows 
the distribution of values for that bioclimatic variable. Density plots show current (blue density plots) and future (2085, RCP 8.5, mean of 3 
GCMs; green density plots). Dark- green shaded areas show current and future overlapping values. Bioclimatic envelope (current and future) 
of each variable was calculated within the current species distribution area (1000 random points extracted within occurrence areas indicated 
by the Ensemble approach). Vertical lines: dashed lines represent 95% bioclimatic envelope of future (green) and current (blue) variables 
within each species current distribution area; solid lines represent the computed mean value for current (blue) and future (green) bioclimatic 
data [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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in temperature seasonality. This strong increase in temperature 
seasonality is expected to be general to all the Northern region of 
Madagascar. To track the change in temperature seasonality, these 
three species might move equatorward, where the temperature sea-
sonality is lower. Specifically for A. madagascariensis, mean annual 
temperature was the second most important variable explaining its 
distribution and could also influence the species redistribution equa-
torward, thanks to suitable habitats in Northeastern Madagascar in 
2085. Several studies on climate change have considered that the 
general trend for species, under the effect of climate change, will be 
to shift their distribution upward or poleward to escape from the in-
creasing mean temperature globally (Chen et al., 2011; Lenoir et al., 
2008; Parmesan & Yohe, 2003; Pecl et al., 2017; Vanderwal et al., 
2013). Using emblematic Malagasy baobab species as an example, 
we demonstrate that this might not always be the case. Depending 
on both the bioclimatic variables that preferentially determine their 
distribution (the temperature seasonality in our study) and the fu-
ture climatic anomalies (increase in temperature seasonality in our 
study), some species are expected to move in the opposite direction 
under the effect of climate change, that is, equatorward.

In a review article, Lenoir et al. (2010) have examined the po-
tential mechanisms that could push species to go “against the flow” 
under climate change. They underlined the importance of additional 
ecological processes, in addition to climate change, to explain ob-
served downslope range shifts in a warming climate. These mech-
anisms encompass biotic interactions (release of the competition 
associated with species range shift under climate change) and land- 
use change (new suitable habitats available downward). In our study, 
we show that it is not necessary to invoke other processes than cli-
mate change to explain shifts in species distribution in opposite di-
rections. Studying the past range shift of 464 Australian bird species, 
VanDerWal et al. (2013), showed that complex interactions between 
temperature, precipitation, and species- specific tolerances could re-
sult in multidirectional distribution shifts, including equatorward. In 
our study, we illustrate one simple climatic mechanism, based on the 

change in temperature seasonality, by which species can shift their 
distribution equatorward.

We have also shown that it is not contradictory for a species to 
move both equatorward and upward under climate change, as is the 
case for A. perrieri, A. suarezensis, and A. madagascariensis (Figure 2). 
This counter- intuitive range shift has already been reported for sub- 
mountainous forest plant species in France, which have shifted 
their distribution both southward (i.e., equatorward in France) and 
upward (Kuhn et al., 2016). The explanation lies in the presence of 
mountainous areas toward the south of the species’ current distri-
bution areas. In Madagascar, the explanation is different. We have 
shown that temperature seasonality is much more correlated to lat-
itude than to elevation and that conversely, mean annual tempera-
ture is much more correlated to elevation than to latitude (Figure S6). 
Consequently, a species can shift its distribution both equatorward 
and upward to track changes in both temperature seasonality and 
mean annual temperature, respectively. Moreover, assuming that a 
species moves toward the equator to track changes in temperature 
seasonality, it might be that the lands toward the equator are located 
at higher elevations, thus leading to an upward shift of the species.

4.3  |  Vulnerability of tropical species to change in 
temperature seasonality

Our findings could have strong implications regarding species re-
sponse to climate change in the tropics. In tropical regions, species 
are adapted to low temperature seasonality (Hua, 2016; Janzen, 
1967; Pacifici et al., 2017; Sheldon et al., 2015). Because sunlight 
duration (~12 hours a day) and solar incidence do not change signifi-
cantly throughout the year, the temperature seasonality in tropical 
regions close to the Equator is narrower in comparison with sub-
tropical or temperate regions (Figure 5a). For instance, temperature 
seasonality influences plant species biology and traits as it deter-
mines the length of the growing season and their phenology, such 

TA B L E  2  Relative importance of the four bioclimatic variables in determining species distribution

Species
Mean annual 
temperature

Temperature 
seasonality Precipitation

Climatic water 
deficit

Most important variables 
(first and second)

A. digitata 0.364 0.633 0.372 0.552 Tseas/Cwd

A. grandidieri 0.526 0.239 0.550 0.110 Prec/Tmean

A. madagascariensis 0.651 0.824 0.309 0.153 Tseas/Tmean

A. perrieri 0.369 0.954 0.336 0.518 Tseas/Cwd

A. rubrostipa 0.320 0.330 0.360 0.730 Cwd/Prec

A. suarezensis 0.211 0.987 0.620 0.150 Tseas/Prec

A. za 0.471 0.309 0.625 0.168 Prec/Tmean

Note: Here we present the variable mean rank of importance over the four statistical models for each species. Temperature seasonality was the most 
important variable in determining species distribution for four baobab species: Adansonia digitata, Adansonia madagascariensis, Adansonia perrieri, 
and Adansonia suarezensis. Precipitation was the most important for Adansonia grandidieri and Adansonia za, while climatic water deficit was the most 
important variable for Adansonia rubrostipa.
The two most important variables for each species are in bold.
Abbreviations: Cwd, climatic water deficit; Prec, mean annual precipitation; Tmean, mean annual temperature; Tseas, temperature seasonality.
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as the date of foliation, flowering, and fruiting (Pacifici et al., 2017; 
Wright, 1996).

Here, we have shown that an increase in temperature season-
ality could force species to shift their distribution equatorward. 
Looking at the projected change in temperature seasonality in 2085 
under RCP 8.5, a general increase in temperature seasonality across 
the tropics is expected (up to +1°C for the standard deviation of 
the monthly temperatures), with a particularly marked change in 
the Amazon region (Figure 5b). As for A. perrieri and A. suarezen-
sis in Madagascar, the species redistribution equatorward to track 
changes in temperature seasonality might be impeded by several 
geographic and climatic barriers. This might also happen through 
several tropical lands located on islands in the Caribbean, Indian 
Ocean, or Southeast Asia for example. On these islands, the absence 
of land equatorward could act as a geographical barrier for species 
moving equatorward due to climate change. In addition, much of the 
tropical natural areas have been degraded, largely because of defor-
estation (Hansen et al., 2020). This could also prevent species from 
finding suitable habitats equatorward in tropical forests. Finally, 
species already distributed at the equator will not be able to move 
toward areas with lower seasonality, in analogy with species already 
at the top of the mountain, which cannot shift their distribution up-
ward to track temperature changes.

To conclude, our study shows that not all species should mi-
grate poleward or upward as the climate warms, which reinforces 

the results of previous studies (Kuhn et al., 2016; VanDerWal et al., 
2013). Depending on the relative importance of the bioclimatic vari-
ables at explaining species distribution and regional climatic anom-
alies, shifts in species distribution can be multidirectional, including 
equatorward. We also underline the importance of the increase in 
temperature seasonality in the tropics that could potentially drag 
to extinction a large number of species adapted to low seasonality, 
among which three out of the seven emblematic baobab species of 
Madagascar.
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F I G U R E  5  Map of temperature seasonality and future anomaly in the tropics. (a) Map of the temperature seasonality at 10’ resolution 
across the tropics. Black dashed line represents the equator. Intertropical regions in South America, Africa, Southeast Asia, and Oceania 
have similar low temperature seasonality values and temperature seasonality is decreasing from the poles to the equator. (b) Temperature 
seasonality anomaly obtained while comparing future temperature seasonality in 2085 under RCP 8.5 with current temperature seasonality. 
Future temperature seasonality in 2085 under RCP 8.5 is the mean of three global circulation models (GCMs) (NorESM1- M, GISS- E2- R, and 
HadGEM2- ES). Temperature seasonality will increase throughout most of the tropics, with a particular strong increase in South America. 
(c) Future temperature seasonality in 2085 under RCP 8.5 (mean of the three selected GCMs). Despite changes in temperature seasonality 
in the future, the gradient of temperature seasonality, with a lower temperature seasonality at the equator, will be conserved in the future 
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study are available on GitHub (https://github.com/ghisl ainv/baoba 
bs_mada). The GitHub repository has been permanently archived in 
the CIRAD Dataverse (https://doi.org/10.18167/ DVN1/LIALRR).
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