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A B S T R A C T

The increase in Earth observations from space in recent years supports improved quantification of carbon storage
by terrestrial vegetation and fosters studies that relate satellite measurements to biomass retrieval algorithms.
However, satellite observations are only indirectly related to the carbon stored by vegetation. While ground
surveys provide biomass stock measurements to act as reference for training the models, they are sparsely
distributed. Here, we addressed this problem by designing an algorithm that harnesses the interplay of satellite
observations, modeling frameworks and field measurements, and generated global estimates of above-ground
biomass (AGB) density that meet the requirements of the scientific community in terms of accuracy, spatial
and temporal resolution. The design was adapted to the amount, type and spatial distribution of satellite data
available around the year 2020. The retrieval algorithm estimated AGB annually by merging estimates derived
from C- and L-band Synthetic Aperture Radar (SAR) backscatter observations with a Water Cloud type of model
and does not rely on AGB reference data at the same spatial scale as the SAR data. This model is integrated with
functions relating to forest structural variables that were trained on spaceborne LiDAR observations and sub-
national AGB statistics. The yearly estimates of AGB were successively harmonized using a cost function that
minimizes spurious fluctuations arising from the moderate-to-weak sensitivity of the SAR backscatter to AGB.
The spatial distribution of the AGB estimates was correctly reproduced when the retrieval model was correctly
set. Over-predictions occasionally occurred in the low AGB range (<50 Mg ha− 1) and under-predictions in the
high AGB range (>300 Mg ha− 1). These errors were a consequence of sometimes too strong generalizations made
within the modeling framework to allow reliable retrieval worldwide at the expense of accuracy. The precision of
the estimates was mostly between 30% and 80% relative to the estimated value. While the framework is well
founded, it could be improved by incorporating additional satellite observations that capture structural prop-
erties of vegetation (e.g., from SAR interferometry, low-frequency SAR, or high-resolution observations), a dense
network of regularly monitored high-quality forest biomass reference sites, and spatially more detailed char-
acterization of all model parameters estimates to better reflect regional differences.

1. Introduction

Above-ground biomass is defined by the Global Carbon Observing
System (GCOS) as one of 55 Essential Climate Variables (ECV) due to its
impacts on the surface energy budget, the land surface water balance,
the atmospheric concentration of greenhouse gases and a range of
ecosystem services, such as provision of timber and recreation. AGB is
defined as the mass, expressed as oven-dry weight of the woody parts
(stem, bark, branches, and twigs), of all living trees excluding stump and
roots and is directly related to the amount of carbon stored by the woody
vegetation. In this study, AGB refers to the density of biomass per unit
area and is expressed in Mg ha− 1.

Quantifying the amount of biomass stored in live vegetation globally
requires techniques that can collect data related to biomass in a timely
and reliable manner (Houghton et al., 2009). Surveys implemented in
forest inventories are designed to cover large areas with high precision
in a timely and cost-effective manner while Earth Observation (EO) from
space achieves wall-to-wall coverage within days to weeks and captures
the spatial variability of biomass (Goetz et al., 2009). However, as
neither the carbon content nor the organic mass stored in woody vege-
tation can be measured by EO, such data need to be ingested in
modelling frameworks that estimate biomass.

The availability of global and repeated image datasets acquired by
satellites led to the first wall-to-wall datasets of AGB in the early 2010s
(Baccini et al., 2012; Hu et al., 2016; Saatchi et al., 2011). The lack of
extensive field observations of AGB to train the retrieval model was
overcome by using the spatially dense global dataset of Ice Cloud and
Elevation Satellite (ICESat) observations together with models that
predicted AGB from ICESat metrics. AGB retrieval models, whose pre-
dictors came from EO image datasets, were then trained with these
samples and inverted to create wall-to-wall maps of AGB.

Regardless of the reference dataset, AGB was predicted over large
areas with a single model parameterization (Bouvet et al., 2018). The
resulting failure to capture spatial changes in the relationship between

AGB and the predictor variables caused biases (Avitabile et al., 2011;
Bouvet et al., 2018; Mitchard et al., 2013). Finer stratification of the
models relating LiDAR metrics to field measurements of AGB was
therefore introduced with the availability of AGB maps inferred from
regional Airborne Laser Scanning (ALS) campaigns (Xu et al., 2017,
2021). Such maps are based on dense spatial sampling and accurate
measurements of canopy structure metrics, so the relationship between
AGB from field plots and the LiDAR observations is well characterized
(Ferraz et al., 2018; Labriere et al., 2018; Ometto et al., 2023; Xu et al.,
2017). However, the uneven spatial distribution of ALS-based maps of
AGB may cause biases if the statistical relationships between AGB and
LiDAR-derived metrics, such as mean canopy height, are extended to
areas where they have not been validated.

A straightforward procedure to compensate for the lack of wide-
spread reference AGB observations to train a retrieval model is to use
existing wall-to-wall AGB map estimates (Chen et al., 2021; Fan et al.,
2019; Liu et al., 2015; Prigent and Jimenez, 2021) or spatially dense
estimates of AGB from spaceborne LiDAR (Shendryk, 2022). Model
training can account for spatial variability in how the EO signals respond
to AGB but it may propagate biases in the map-based AGB values
(Salazar-Neira et al., 2023) into the derived AGB retrieval model.

Given an extensive dataset of reference samples, the retrieval model
can be based either on a global regression equation (Fan et al., 2019; Liu
et al., 2015) or a non-parametric approach (Prigent and Jimenez, 2021;
Salazar-Neira et al., 2023; Shendryk, 2022). A parametric approach
requires knowledge of the signatures of the EO predictors (Liu et al.,
2015; Rodríguez-Fernández et al., 2018). The retrieval model can then
be tailored to the AGB reference values, e.g., by stratification according
to ecological or geographical criteria. Usually, only a few model re-
alizations are used to cover the globe, which leads to strong general-
ization in the retrieval model. Machine learning instead offers a means
of adapting the relationship between AGB and the EO data to local
conditions; it may also mitigate deficiencies in the reference dataset
when multiple predictors are used (Salazar-Neira et al., 2023).
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Nonetheless, while the reasons for errors from a parametric model can
be identified and fixed, the trial-and-error approach underlying machine
learning hinders this type of insight.

Having the aim of estimating AGB globally with a spatial resolution
of 1 ha for 2010, Santoro et al. (2021a) addressed these issues by: (i)
using a parametric modeling framework; (ii) adopting a spatially
adaptive procedure to estimate the parameters of the retrieval model;
and (iii) removing the requirement for training data. The retrieval al-
gorithm had to be built around global EO image data for that epoch that
were sensitive to forest structural properties. This requirement was met
by Synthetic Aperture Radar (SAR) observations of backscattered in-
tensity at C-band (multiple observations) and L-band (single observa-
tion). Calibration of the SAR-based retrieval model was aided by maps of
forest variables derived from optical satellite images. The overall spatial
distribution of AGB was captured but with positive biases for lower AGB
(50–100 Mg ha− 1) and negative biases in the high AGB range (>250 Mg
ha− 1) (Santoro et al., 2021a). Retrieval errors were explained as a
consequence of concurring factors: (i) lack of sensitivity of SAR back-
scatter to biomass in the upper range of AGB; (ii) a broad empirical
approach to modelling the interaction between microwaves and forest
structure; (iii) too few observations from satellites; (iv) incorrect as-
sumptions on the range of AGB that could be estimated at a given
location; and (v) artefacts in the satellite data.

While the effect of the sensitivity of the SAR backscatter to AGB
cannot be compensated for, all other causes of bias can be dealt with.
Systematic and repeated observations by the wider range of spaceborne
SAR and LiDAR instruments onboard more recent missions and sub-
stantial advances in modelling the relationship between AGB and
spaceborne LiDAR metrics of forest structure (Duncanson et al., 2022;
Kay et al., 2021; Labriere et al., 2018) permit major improvements to
global retrieval algorithms that follow the approach developed by San-
toro et al. (2021a).

Compared to this study, we exploit a denser set of LiDAR observa-
tions and of SAR images that have stronger sensitivity to AGB (multi-
temporal L-band and cross-polarized C-band backscatter data). The
retrieval model shifts from using just a few empirical functions to
incorporating LiDAR data, which support two structural functions that
provide a fully parametric explanation of the link between SAR back-
scatter and AGB. Additionally, the availability of several years of SAR
data allow to introduce the temporal dimension in the process of
merging AGB estimates from the different SAR data streams to stabilize
its estimation. These innovations yield a global AGB retrieval approach
that is fully parametric and physics-based, and is designed to integrate
multiple data streams at high-to-moderate spatial resolution (≤1 ha)
from satellites which are operational over decades.

The approach is referred to as the CCI Biomass retrieval algorithm
since it was developed within the European Space Agency Climate
Change Initiative (Plummer et al., 2017). The performance of the
retrieval algorithm is assessed here only for one year, since the focus of
this paper is on the design and performance of the AGB retrieval method,
and its accuracy is assessed by comparing against field measurements of
AGB. While the algorithm is designed to create repeated estimates of
AGB over several decades from which trends in AGB can be derived,
comparison of the AGB estimates from this study with those from other
global datasets and validation of AGB changes require additional in-
vestigations, which are deferred to a later paper.

2. Datasets

This Section provides an overview of the datasets used to either es-
timate AGB or to validate the estimates (Table 1). They comprise sat-
ellite observations by SAR and LiDAR missions (Sections 2.1 and 2.2),
map products derived from satellite observations and other ancillary
data (Section 2.3), and AGB values derived from field inventories
(Section 2.4). As the satellite measurements are only partly related to the
mass of the trees and have intrinsic errors, the spatial resolution of the

AGB estimates was set to 100 m × 100 m, which is coarser than the
spatial resolution of any predictor variable but still acceptable for
discerning spatial patterns in the AGB maps. This resolution was ob-
tained by spatial averaging or resampling each dataset before their use
in the retrieval. This both increases the radiometric and geometric
quality of the data and reduces the computing resources needed to
generate global, spatially explicit estimates of AGB.

The Advanced Land Observing Satellite (ALOS-2) Phased Array L-
band SAR (PALSAR-2) data displayed stronger sensitivity to forest
structure than other satellite image datasets (Santoro and Cartus, 2018)
and represented the most important predictor of AGB. Although C-band
microwaves have limited penetration into vegetation canopies, the
Sentinel-1 C-band dataset was found to contribute in sparse and mod-
erate forest cover. While spaceborne LiDAR observations can provide
reliable descriptors of forest structure, they were available only as
discrete samples, so were used as ancillary datasets supporting the AGB
prediction. Thematic datasets of canopy density, land cover, terrain
elevation and ecoregions were used to inform either the SAR
pre-processing or training of the retrieval model.

Plot-level AGB estimates were used only for validation because their
uneven worldwide distribution and differences in their measurement
protocols prevented spatially consistent estimation of parameters of the
AGB retrieval model. Reference AGB values were instead provided by
average values from National Forest Inventory (NFI) data at sub-
national scale, which provided wide coverage at the expense of spatial
detail.

2.1. SAR datasets

2.1.1. ALOS-2 PALSAR-2
The ALOS-2 PALSAR-2 instrument operates at L-band (wavelength:

23.5 cm) in several modes. We used images acquired in Fine Beam (FB)
and Wide Beam (WB) modes. Data were acquired in dual polarization
(HH and HV), covering swaths of approximately 70 km in FB mode and
350 km in WB mode. In FB mode, acquisitions are scheduled to maxi-
mize the information on land surface properties from given regions
(Rosenqvist et al., 2014). The WB mode implements the ScanSAR im-
aging technique, which gives coverage of a larger swath at the expense
of spatial resolution. An additional advantage of the wide swath is that

Table 1
List of datasets used to estimate AGB with the proposed retrieval algorithm. The
spatial scale refers to the pixel size of the dataset as used by the biomass retrieval
algorithm.

Dataset Observable Use Year Spatial
scale

ALOS-2
PALSAR-2

SAR backscatter Predictor 2015–2021 100 m ×

100 m
Sentinel-1 SAR backscatter Predictor 2015–2021 150 m ×

150 m
ICESat-1 GLAS Canopy height and

density
Predictor 2003–2009 70 m

diameter
ICESat-2
ATLAS

Canopy height Predictor 2019–2021 25 m ×

100 m
Landsat tree
cover

Canopy density Auxiliary 2010 30 m × 30
m

CCI Land Cover Land cover Auxiliary 2015–2021 300 m ×

300 m
Copernicus
DEM

Surface elevation Auxiliary Ca. 2010 30 m × 30
m

Terrestrial
Ecoregions of
the World

Ecoregions, biomes
and realms

Auxiliary Undated Polygons

Plot-level AGB Values of AGB at
field inventory plots

Validation 2020 Between
0.1 and 6
ha

Inventory-
based AGB
statistics

Subnational AGB
average value from
field inventory data

Predictor 2000–2020 (Sub)-
national
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adjacent swaths overlap significantly (about 75% at the Equator, more
at higher latitudes), allowing multiple observations within the satellite’s
revisit cycle of 14 days.

The FB and WB mode datasets consisted of all images acquired be-
tween 2015 and 2021. As part of the systematic observation plan
implemented for ALOS-2 (https://www.eorc.jaxa.jp/ALOS/en/alos-2/a
2_observation_e.htm), the FB images were acquired primarily between
May and October, resulting in a small number of observations per
location (pixel) (Fig. 1). The WB mode is operated primarily across the
tropical belt, giving a higher density of measurements across the tropics,
in places reaching 20 observations per pixel in 2020 (Fig. 1). The
average SAR backscatter (Fig. 1) shows almost full global coverage with
the two modes, with small gaps in northern Siberia and southeast China.
The highest backscatter occurred in regions with large biomass stocks
such as tropical rainforests in South America, Central Africa and
Southeast Asia, and temperate and boreal forest across the northern
hemisphere, the Andes, and Southeast Australia. In contrast, sparsely
forested regions such as the Canadian Prairies, northern Siberia, the
Pampas and the Australian Outback have low backscatter. The mosaic of
PALSAR-2 images also shows banding corresponding to backscatter
offsets between adjacent strips either along ascending orbits (e.g., in the
boreal zone, imaged in the FBmode) or descending orbits (in the tropical
zone, imaged more frequently in the WB mode). This arises from a
combination of the dependence of the backscatter on local incidence
angle, which differs depending on the scattering object, and imperfect
calibration across the image swath of the FB and WB modes.

As part of the support by the Japan Aerospace Exploration Agency
(JAXA) to the CCI Biomass project, a dedicated processing chain was
established by JAXA with ALOS-2 FB data provided as extended back-
scatter path images with a pixel size of approximately 25 m × 25 m in
the radar geometry. We pre-processed the path images to produce fully
calibrated and terrain-corrected backscatter data with a pixel size of
100 m× 100m (Fig. S1). The Noise Equivalent Sigma Zero (NESZ) in the

original SAR images was first compensated, based on range gradients of
backscatter over smooth water surfaces. Each image was then multi-
looked with a 4 × 4 pixel window, and terrain geocoded with a look-
up table relating the SAR and the map geometry represented in the
Digital Elevation Model (DEM) (Section 2.3), before tiling to a pre-
defined 1◦ × 1◦ grid. This tiling systemwas implemented to create stacks
of co-registered observations from the various SAR backscatter datasets.

The look-up table supporting terrain geocoding was derived from
ALOS-2 orbital data, elevation information in the DEM, and parameters
of the SAR look geometry (Wegmüller, 1999). Images of local incidence
angle, pixel area and a mask of layover and shadow were also obtained
(Frey et al., 2013). The SAR images were then corrected for pixel area
variations, including the conversion from s0 to g0 (i.e., σ0 divided by the
cosine of the local incidence angle), which accounted for the effect of
local incidence angle on the SAR backscatter (Frey et al., 2013). Im-
perfections in the look-up table due to uncertainties in the parameters
involved in its estimation were corrected by matching the SAR image to
a SAR image simulated from the DEM (Wegmüller et al., 2002). The
geocoding accuracy was estimated for each individual scene, resulting
on average in a few tenths of the pixel size.

The ScanSAR data were pre-processed by JAXA and terrain-geocoded
to geographic coordinates and a pixel size equivalent to 50 m at the
Equator. The ALOS World 3D-30m (AW3D30) Digital Surface Model
(DSM) created from data acquired by the Panchromatic Remote-sensing
Instrument for Stereo Mapping (PRISM) onboard ALOS provided the
reference for the elevation (Tadono et al., 2014). The images were also
compensated for variations in the pixel scattering area due to topog-
raphy and for the dependence of backscatter on the local incidence angle
(Shimada and Ohtaki, 2010). The WB images were provided by JAXA in
the form of 1◦ large tiles, each consisting of: (i) the co- and
cross-polarized SAR backscatter images, (ii) an image of the local inci-
dence angle with respect to the orientation of the pixel, derived from the
DEM used by JAXA for the pre-processing, (iii) layover/shadow masks,

Fig. 1. Average per-pixel values of combined ALOS-2 FB and WB HV-polarized backscatter observations for 2020 (top panel) and corresponding number of ob-
servations (bottom panel).
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(iv) an image of the date of acquisition of the image and (v) a mask
indicating whether a pixel is located over land or (ocean) water, as well
as pixels affected by radar shadow and layover. Each layer was spatially
averaged to a pixel size of 100 m and inserted into the 1◦ gridding
system. Cross-correlation of the WB data with respect to the FB dataset
indicated sub-pixel co-registration accuracy.

2.1.2. Sentinel-1
The Sentinel-1 mission consists of two identical C-band (wavelength:

6 cm) SAR satellite units (1A and 1B) which began operating together in
2017, although Sentinel-1A started operation in late 2014. Each unit has
a 12-day repeat-pass interval, but their combination gave images every
six days when they were both operational. Sentinel-1A is still operating,
but Sentinel-1B failed at the end of 2021. Over land, Sentinel-1 mostly
operates in the Interferometric Wide Swath (IWS) mode, acquiring data
in dual-polarization (HH + HV or VV + VH) with a spatial resolution of
approximately 20 m in range and 5 m in azimuth, and covering a swath
of approximately 250 km. For the polar regions, with some limited
extension over northern regions, Sentinel-1 operates in Extended Wide
Swath (EWS) dual-polarization mode, covering a swath of more than
400 km with a spatial resolution of 40 m in range and 20 m in azimuth.
The EWS mode is not just a complement to IWS but is an independent
mode defined to give frequent coverage at moderate resolution.

The increasing orbital overlap of IWS acquisitions towards the poles
yields an increasing number of observations within a repeat-pass cycle of
12 days for a given point on the ground. For regions observed with both
units along both ascending and descending paths, one or more obser-
vations per day are possible. In contrast, the large overlap of adjacent
orbital tracks in EWS mode provides a very high number of observations
within the repeat-pass cycle of each unit, so that several observations
each day are possible at the highest latitudes.

The annual wall-to-wall mapping capability of Sentinel-1 is demon-
strated by the number of observations available in 2020 (Fig. 2);

latitudes outside 75◦N and 56◦S are not shown as they are irrelevant for
AGB. We considered all IWS images acquired by both units except over
Europe, where we discarded the images acquired by the 1B unit because
they were redundant; the highest observation density was still over
Europe (Fig. 2). Global coverage was achieved for all forests except in
small regions in northern Canada and Siberia. Outside Europe, hazard-
prone areas were imaged more frequently than other areas. As a mini-
mum, dual-polarized observations every 12 days were available,
resulting in approximately 60 observations per pixel with two units.
Before 2017, the density of observations was lower, with occasional gaps
in regions with low observational priority (e.g., northern latitudes and
deserts), in which case some gap-filling was possible with EWS data. As
with ALOS-2, the VH-polarized backscatter exhibits sensitivity to forest
cover and density (Fig. 2), but with weaker contrast between high and
low biomass forest, such as between rainforest and savannas in South
America and Africa. As for ALOS-2, banding occasionally affected the
imagery due to imperfect calibration across Sentinel-1 swaths and the
scatterer-specific effect of local incidence angle on the backscatter.

Pre-processing (Fig. S2) started from ground-range projected images
of SAR backscatter intensity. Calibration and noise reduction used the
calibration gain and the noise factors reported in the image metadata.
Precise orbit information was used to replace state vectors provided in
the metadata. Boxcar averaging of the backscatter in a 15 × 15 window
provided a Multi-Look Intensity (MLI) image with pixels of size 150 m in
both range and azimuth. This size was selected for consistency with the
dataset of Environmental Satellite (Envisat) Advanced SAR (ASAR)
backscatter images (Santoro et al., 2015) covering 2005–2012, and thus
support studies based on multi-decadal records of C-band observations.

Each MLI image was terrain-geocoded to the map geometry of the
DEM. We used the same procedure as for the ALOS-2 PALSAR-2 imagery
in which a look-up table related the geometry of the Sentinel-1 image
and the map geometry. In addition, images of local incidence angle,
pixel area and terrain slope and aspect angles were generated. Pixels

Fig. 2. Average per-pixel values of Sentinel-1 VH-polarized backscatter observations for 2020 and corresponding number of observations. The image with the
number of observations per pixel is constrained between 0 and 150 to enhance the contrast outside Europe.
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affected by radar layover or shadowwere flagged in a binarymask. Since
precise orbits were used, there was no need to refine the geocoding look-
up table. The co-registration error between the reference DEM and the
Sentinel-1 imagery was below 1/10th of the output pixel size (i.e., less
than 15 m). To compensate for distortions of the SAR backscatter due to
sloping terrain, the normalization factor for true pixel area was applied
to each Sentinel-1 image. In addition, the σ0 measurement was con-
verted to γ0. Finally, each MLI backscatter image normalized for pixel
area was terrain geocoded with the geocoding look-up table and tiled to
the pre-defined 1◦ × 1◦ grid.

Because the temporal correlation between individual backscatter
observations was high, especially over short periods of time (Fig. S3),
the Sentinel-1 dataset was reduced to monthly averages of SAR back-
scatter for each polarization. Shorter time scales would have only
marginally reduced the amount of data because of the 12-day interval
between image acquisitions. Longer time scales would have reduced the
seasonal backscatter signal, which allows better retrieval accuracy than
retrieval based on a single image (Santoro et al., 2011).

2.1.3. Precision of the SAR backscatter measurements
The precision of a backscatter measurement is affected by the

radiometric and calibration accuracies, thermal noise and speckle. SAR
pre-processing introduces additional uncertainty related to: (i) the pre-
cision of the geocoding transformation and resampling between radar
and map geometries, (ii) the horizontal and vertical precision of the
DEM used as reference for the map geometry, and (iii) the precision of
the pixel area and local incidence angle used to normalize the back-
scatter for slope-induced effects on the backscatter. Since the pixel-level
uncertainties in the DEMs were unavailable, we could not estimate the
variance of a backscatter measurement from the individual variances of
the terms listed above. The variance was estimated empirically by
equating it to the Equivalent Number of Looks (ENL) (Oliver and Que-
gan, 1998) in Eq. (1), where μ represents the expected value of the SAR
backscatter and σ its standard deviation.

ENL=
μ2
σ2 (1)

The ENL was estimated for each 1◦ × 1◦ grid cell and for each SAR image
from the mean and standard deviation of SAR backscatter measurements
with at least 95% canopy density based on the MODIS Vegetation
Continuous Fields dataset (DiMiceli et al., 2011). This approach was
adopted as surfaces with very dense canopy were assumed to represent
the most homogeneous type of land surface. The ENL estimates spread
over a wide range of values (Fig. 3), due to scattering inhomogeneities
and a variable number of observations per grid cell. For Sentinel-1, the
median values of the ENL were 124 and 136 for the VV- and
VH-polarization respectively, while for PALSAR-2 they were equal to 50
(FB mode) and 19 (WB mode), regardless of the polarization. The larger
values for Sentinel-1A come from the higher level of aggregation. More
rigorous analysis that estimated ENL in polygons manually drawn to
encompass targets with homogeneous backscatter resulted in slightly
higher values (~150 for Sentinel-1 and >80 for ALOS-2). For simplicity,
we used these latter estimates as single, global ENLs characterizing the
precision of the SAR backscatter observations. ENLs of 150 and 80
correspond to a standard deviation of 0.34 dB and 0.46 dB for Sentinel-1
and ALOS-2, respectively.

2.2. LiDAR-based metrics of forest structure

2.2.1. ICESat GLAS
Between 2003 and 2009, the Geoscience Laser Altimeter System

(GLAS) on board ICESat collected information about the vertical struc-
ture of forests in ca. 65 m diameter footprints collected every 170 m
along track. The distance between tracks was of the order of tens of km
and increased towards the Equator. From the GLA14 product (version

34) (https://nsidc.org/data/gla14/versions/34), which provides altim-
etry data for land surfaces only to which geodetic, instrument and at-
mospheric corrections had already been applied, the raw waveform was
modeled with a multi-mode Gaussian (Hofton et al., 2000). The GLAS
data were used to estimate canopy density (CD), defined as the ratio of
energy received from the canopy (returns above the ground peak) to the
total energy received, and the canopy height (h), defined as the distance
between the ground peak and signal start. This is referred to as relative
height 100 (RH100), i.e., the 100th percentile of waveform energy
relative to ground elevation. Pre-processing and filtering (Los et al.,
2012; Simard et al., 2011) resulted in a database of 26.5 million valid
footprints (Santoro et al., 2022). Because of the large distance between
the orbital tracks and the strong filtering applied to the GLA14 dataset,
the coverage was not uniform, with large gaps in South China and the
southernmost regions of South America, Africa and Australia (Santoro
et al., 2022) (Fig. S4). For the standard deviation (SD), we assumed a
value of 20% of the individual estimates of CD and RH100
(Neuenschwander et al., 2008).

2.2.2. ICESat-2 ATLAS
Unlike the GLAS sensor, the Advanced Topographic Laser Altimeter

System (ATLAS) onboard the ICESat-2 satellite uses photon counting to
retrieve elevation (Neuenschwander and Pitts, 2019). ATLAS splits the
laser into six beams arranged as three pairs of beams approximately 3.3
km apart (Markus et al., 2017). Each pair consists of a strong and weak
energy beam (4:1 ratio). The ICESat-2 ATL08 product contains
geophysical parameters related to vegetation and terrain heights
(Neuenschwander and Pitts, 2019). The parameters are provided in the
form of data segments with a 100 m step size along the flight direction.
According to the data producer, the 98th percentile of all height values
within a segment (RH98) is most suitable to represent the canopy height.
A metric representative of canopy density is not provided because the
full waveform is not available. From the original photon data, the
original files were reformatted into segments of 100 m length and 25 m
width (https://github.com/remotesensinginfo/pysl4land).

ICESat-2 files covering the years 2019–2021 were used, resulting in
filtering 334 million segments of data. Based on Neuenschwander and
Pitts (2019), we discarded segments that were: (i) acquired by the weak

Fig. 3. Box plots representing the distribution of the ENL estimates from 1◦ ×

1◦ grid cell per SAR sensor, mode and polarization. Each box shows the median
value (central mark), the interquartile range (edges of the box), the most
extreme data points not considered outliers (whiskers) and the outliers, defined
as data points more than three standard deviations away from the median
(plus markers).
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beams because of the very small number of photons recorded from the
forest floor, in particular in dense canopies, (ii) characterized by less
than three photons reflected by the canopy, (iii) flagged as not belonging
to natural vegetation in the metadata and (iv) exhibited an elevation
differing more than 25 m from the reference DEM used in all ATL
products. In addition, values greater than 50 mwere filtered out because
they frequently occurred in sparsely vegetated or unvegetated regions.

Fig. 4 shows maps of average canopy height, the corresponding
average of height SD and the number of segments for a grid cell spacing
of 0.1◦ (panels (a), (g) and (h), respectively). Adopting a 0.1◦ cell size
and using data from three years, we could characterize the spatial dis-
tribution of canopy height globally with high precision and only minor
gaps in regions that are poorly vegetated. The spatial patterns of the
average canopy height map correspond to the distribution of forest
height obtained with ICESat GLAS, although the coverage by the latter
was poorer (Fig. S4). The ICESat-2 mean canopy heights agree strongly
with the corresponding ICESat values (panel (c)), albeit for heights
above 30 m where the ICESat-2 values tend to be larger. The differences
between the two datasets when ICESat-2 canopy height exceeds 40m are
due to obviously erroneous values that were undetected during filtering.

Fig. 4 also shows the 90th and the 98th percentile of segment-level
canopy heights for each 0.1◦ grid cell. These two layers quantify two
terms in the AGB retrieval model, i.e., the height of dense forests (hdf in
Section 3.2) and the maximum canopy height (hmax in Section 3.1). The
maximum and mean canopy height are highly correlated (panel (f)) and
their difference decreases for taller forests.

2.3. Auxiliary raster datasets

The tree canopy and bare ground cover datasets were derived from
Landsat 7 ETM+ imagery acquired around 2010 and have a pixel size of

approximately 30 m (Fig. S5) (Hansen et al., 2013). Both quantities are
provided as values between 0 and 100% per pixel. Changes of tree cover
between 2010 and 2020 are not accounted for because the maps of losses
(annual) and gains (single value) published alongside the percentage
tree cover map do not report the magnitude of the change. It was
assumed that such changes did not impact the estimation of the retrieval
model parameters.

The CCI Land Cover dataset stratifies land cover into 22 classes and
consists of global annual datasets between 1992 and 2020 with a spatial
resolution of 300m (Defourny et al., 2017). The datasets coincident with
the SAR images were used in the model training process to exclude SAR
observations not associated with natural vegetation since these could
bias the retrieval model parameters (Santoro et al., 2015).

The Copernicus GLO-30 DEM data product had a pixel size of 1 arc-
second, i.e., approximately 30 m at the Equator, with World Geodetic
System 1984 (WGS84) and Earth Gravitational Model 2008 (EGM2008)
horizontal and vertical reference, respectively. The absolute vertical and
horizontal accuracy of the DEM has been reported to be better than 4 m
and 6m, respectively (Fahrland, 2022). To adhere to the target pixel size
of the SAR data, the DEM was either averaged to 90 m and resampled to
100 m (ALOS-2) or averaged to 150 m (Sentinel-1).

The Terrestrial Ecoregions of theWorld (TEOW) dataset (Olson et al.,
2001) divides the Earth’s land surfaces into 825 ecoregions, which are
categorized within 14 biomes and eight biogeographic realms. The
boundaries of each ecoregion, biome and realm correspond to the
original extent of natural communities prior to major land-use change.
The dataset was rasterized and reprojected to the geometry of each of
the SAR datasets. It was used to segment the ICESat GLAS dataset when
estimating the model coefficient relating canopy density and canopy
height measurements from the individual waveforms.

Fig. 4. Global distribution of canopy height metrics computed at 0.1◦ spatial scale (a) mean ICESat-2 (b) mean ICESat, (d) 90th percentile ICESat-2, (e) 98th
percentile ICESat-2, (g) average standard deviation and (h) number of segments. The ICESat-2 values were based on segment-level observations taken between 2019
and 2021. In panel (d) and (e), data gaps were filtered by inpainting over neighboring valid values. Panel (c) shows the median (circles) and interquartile range
(vertical bars) of mean canopy height from the ICESat GLAS dataset corresponding to a given height integer in the ICESat-2 dataset. Panel (f) shows the median
(circles) and interquartile range (vertical bars) of the 98th percentile of canopy height corresponding to a given mean canopy height level in the ICESat-2 dataset.
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2.4. AGB from field inventory

2.4.1. Plot inventory measurements
The plot data originated from National Forest Inventories (NFI) and

research networks, thus embodying different statistical sampling stra-
tegies and functions predicting AGB from the field measurements. After
screening and temporal harmonization of the AGB values (Araza et al.,
2022), the database of plot measurements consisted of 59,052 AGB
values representative of the year 2020. The database is opportunistic in
nature, so the spatial distribution of the samples is uneven and several
regions of the world are not represented (Fig. S6).

Plot-based AGB values have errors which decrease with the size of
the plot (Réjou-Méchain et al., 2019), so the data in our analysis were
split into three Tiers. Data from plots≤0.6 ha (minimum size: 0.015 ha),
which are typically collected by NFIs, were in Tier 1. This category was
the most populated with 58,716 samples. Tier 2 consisted of plots with
areas in the range 0.9–3 ha and included 315 samples. Large plots (≥6
ha) belonged to Tier 3, which consisted of 21 samples. Since the plots in
Tier 1 were unlikely to be fully representative of the AGB in the 1-ha
area of a pixel and comparison of plot- and map-based AGB only be-
comes meaningful when averaging over multiple values (Araza et al.,
2022), we considered Tier 1 data only when at least five plots were
located in a 0.1◦ × 0.1◦ grid cells, with the mean of all plots in the grid
cell used as the AGB value, as originally proposed in Santoro et al.
(2021a).

2.4.2. Sub-national average values
Sub-national statistics on AGB were gathered for 106 countries. A

small fraction of them were computed directly for countries that pro-
vided access to the original plot data collected as part of their NFI sur-
veys. However, most were instead gathered from reports and table
statistics published by the NFIs. Such NFI-based values were available
except for large parts of Africa, the Middle East, parts of Southeast Asia
and the Caribbean (Fig. S7). For 94 of the countries without NFI data,
national averages of AGB are reported in the FAO Forest Resources
Assessment (FRA) for 2020 (FAO, 2020). The 50 remaining countries
without NFI-based statistics or AGB reported in the FRA 2020 database

were either very small, e.g., in the Caribbean or Oceania, or had little
forest cover. Our database of AGB averages consisted of 761 values for
sub-national administrative or ecological units and 94 values at national
level taken from the FRA (Annex 1, Supplement).

3. Methods

The flowchart in Fig. 5 shows the interdependencies of datasets and
models in the CCI Biomass retrieval algorithm. The retrieval was based
on the BIOMASAR approach, which estimates a forest variable related to
the biomass density of woody vegetation (AGB or growing stock volume,
GSV) from a dense time series of SAR backscatter observations (Santoro
et al., 2011, 2015, 2021a). Here, multi-temporal Sentinel-1 C-band
backscatter data were used to generate a set of global estimates of AGB
with a pixel size of 150 m using the BIOMASAR-C algorithm; these were
then resampled to 100 m to match the AGB estimates obtained from
multi-temporal L-band backscatter data using the BIOMASAR-L algo-
rithm. Auxiliary datasets (Section 2.3), but not in situ measurements,
were used to calibrate the parametric models embedded in the BIO-
MASAR algorithms. To reduce possible systematic errors in the
BIOMASAR-L and BIOMASAR-C estimates, these datasets were merged.
This procedure is implemented for data acquired within one year. With
several years of EO data available, the resulting estimates of AGB were
refined by minimizing their error with a cost function. The precision of
the estimates was estimated at each step and for the final AGB values at
each 100 m pixel. Also indicated in the shaded part of Fig. 5 are possible
routes to improvement of the retrieval by linking it with datasets or
methods superior to those used in this paper.

3.1. The BIOMASAR algorithm

The theoretical basis of the BIOMASAR algorithm has been exten-
sively presented in previous studies (Cartus et al., 2012; Santoro et al.,
2011). While retaining the same structure, empirical coefficients have
been replaced with functions trained on spaceborne LiDAR observations
and AGB values derived from measurements by national forest in-
ventories (Fig. 6).

Fig. 5. Functional dependencies of datasets and approaches forming the CCI Biomass global biomass retrieval algorithm. The shaded part of the flowchart represents
potential improvements resulting from the implementation of supplementary retrieval techniques.
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BIOMASAR-C and -L both exploit the Water Cloud Model in Eq. (2)
(Askne et al., 1997) to estimate AGB from SAR backscatter. This model
relates the backscatter from a forest to horizontal and vertical properties
of the scattering medium, accounting for gaps in the canopy and for
attenuation of the signal along the two-way path inside the canopy. The
effect of canopy gaps is quantified by means of two terms that include
the area-fill factor, η, which is approximated by the canopy density (CD),
i.e., η = CD. The attenuation within the forest canopy was characterized
by its two-way transmissivity, modeled as an exponential function of
canopy height, h, with transmissivity coefficient, a. The total backscatter
from a forest is then represented as a sum of contributions from the
ground, σ0gr, and the vegetation layer, σ0veg:

σ0for =(1 − η)σ0gr + ησ0gre− αh + ησ0veg
(
1 − e− αh) (2)

To express the Water Cloud Model as a function of AGB, it was in-
tegrated with two models relating the two structural variables, η and h,
to AGB (Santoro et al., 2021b, 2022). Eq. (3) relates canopy density and
canopy height by means of an exponential function with the empirical
coefficient q:

η=1 − e− qh (3)

Eq. (4) relates canopy height and AGB, based on a power-law func-
tion with coefficient p1 and p2, as proposed in the literature (Asner and
Mascaro, 2014; Coomes et al., 2017; Dalponte et al., 2019; Labriere
et al., 2018):

AGB= p1hp2 (4)

Inverting Eq. (4) to obtain h = (b1 • AGB)b2 , with b1 = 1/p1 and b2 =
1/p2, and substituting into Eqs. (3) and (2) leads to the integrated
retrieval model in Eq. (5), where the forest backscatter is expressed as a
function of AGB only:

σ0for =
[
1 −

(
1 − e− q•(b1•AGB)

b2
)(
1 − e− α•(b1•AGB)b2

)]
σ0gr

+
(
1 − e− q•(b1•AGB)

b2
)(
1 − e− α•(b1•AGB)b2

)
σ0veg (5)

Estimation of the unknown model parameters for forest structure (q,
p1 and p2) and backscatter (σ0gr, σ0veg and α) for each backscatter image is
described in Section 3.2. Eq. (5) is then inverted to express AGB as a
function of the measured backscatter (Fig. 6). However, saturation of Eq.
(5) imposes a constraint on the maximum retrievable AGB. This is
defined as the AGB estimated with Eq. (4) for maximum height, hmax
(Section 2.2):

AGBmax= p1(hmax)p2 . (6)

AGB estimates corresponding to backscatter values outside the range
0 to AGBmax Mg ha− 1 were replaced with either 0 or AGBmax, whichever
was closer.

If N observations of SAR backscatter (and hence estimates of AGB)
are available over a period when AGB is unlikely to have changed
significantly (e.g., one year), an estimate of AGB with reduced variance,
AGBmt (Eq. (7)), can be obtained by weighted averaging of the N indi-
vidual AGB estimates (Kurvonen et al., 1999; Santoro et al., 2011):

AGBmt =

∑N

i=1
wiAGBi

∑N

i=1
wi

(7)

The weights, wi, are defined as the vegetation-to-ground backscatter
difference in dB, σ0veg - σ0gr, normalized by the maximum backscatter
difference across the multi-temporal stack of observations (Santoro
et al., 2011):

Fig. 6. Flowchart of the BIOMASAR algorithm.
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wi =
σ0veg,i − σ0gr,i

max
(

σ0veg,i − σ0gr,i
) (8)

3.2. Estimation of the model parameters

For the structural model in Eq. (3), canopy density and canopy height
from spaceborne LiDAR data allowed global estimation of the coefficient
q (Kay et al., 2021; Santoro et al., 2022). Since global canopy density
metrics are lacking from the more recent spaceborne LiDARmissions, an
already available set of estimates of q based on ICESat GLAS metrics
were used here (Kay et al., 2021). This dataset (Fig. S8) was obtained by
fitting Eq. (3) in each of the 827 strata of the World Wildlife Fund
terrestrial ecoregion dataset (Olson et al., 2001). The estimation was
then refined in ecoregions covering an area larger than 1◦ × 1◦ where
the model fit was undertaken at the scale of 1◦-wide grid cells.

Spaceborne LiDAR data are also used to train the structural model in
Eq. (4). However, lack of a spatially explicit dataset of AGB measure-
ments with spatial resolution comparable in size to the LiDAR footprints
implies that estimation of the coefficients in Eq. (4) must rely on other
AGB measurements. The relationship between AGB and canopy height
was initially characterized globally with the ICESat GLAS dataset for
canopy height and map-based values of AGB, both averaged to 0.25◦
(Santoro et al., 2022). This allowed the twomodel parameters, p1 and p2,
in Eq. (4) to be estimated at any location, but biases in the AGB estimates
affected the estimation. To mitigate this, the map-based values are
replaced by the AGB averages from inventory measurements at the level
of administrative or ecological units. These are expected to have
significantly smaller bias, but at the expense of spatial detail. To esti-
mate p1 and p2, these AGB averages are regressed to corresponding
average values of canopy height from the ICESat-2 dataset. Spatial
characterization of the height-to-AGB function was achieved by strati-
fying the data by continent and major ecological traits (Fig. S9). The
definition of the 17 strata followed an additional set of criteria based on
number of data values, availability of NFI-based values and uniform
representation of the range of AGB. Such a stratification could not
capture small-scale variability of the height-to-AGB relationship but
establishes reliable predictions of AGB that are consistent with macro-
ecological patterns. It also minimizes the risk of large regions being
characterized by AGB biases attributed to an imperfect function.

The coefficients σ0gr and σ0veg respectively represent the backscatter
intensity from a theoretically unvegetated surface and a canopy dense
enough to prevent any return from the soil. Both are idealizations,
approximated using the average backscatter from unvegetated surfaces
(so-called “ground” pixels) and dense forest canopies (“dense forest”
pixels) within a window (Santoro et al., 2011). The estimation window
corresponds to the size of a tile, i.e., 1◦ × 1◦, in which it is assumed that
there are sufficient “ground” and “dense forest” pixels to reliably esti-
mate σ0gr and σ0veg. To avoid distorting the estimate of σ0gr, areas with very
low canopy density not corresponding to natural vegetation (cropland,
urban areas, bare soil, permanent snow and ice and water bodies) are
masked out using the CCI Land Cover dataset.

To account for the dependence of SAR backscatter on local incidence
angle, the C- and L-band forest backscatter models are trained separately
with tree cover values for five 10◦ wide intervals of local incidence
angle, starting with 20◦ and ending with 70◦. Areas affected by layover
and shadow are masked out.

While the average backscatter for an unvegetated surface is a
reasonable approximation for the coefficient σ0gr, obtaining the average
backscatter for dense forest canopies requires compensating for ground
backscatter from gaps in the canopy (Santoro et al., 2011):

σ0veg =
σ0df −

(
1 − ηdf + ηdf e− αdf

)
σ0gr

ηdf (1 − e− αdf )
(9)

Eq. (9) was derived by inverting Eq. (2) for σ0veg and equating all the

forest-related coefficients to those appropriate for dense forests, σ0for =
σ0df. The parameters ηdf and hdf represent the average canopy density and
height for dense forests, respectively. To reduce the number of variables
in Eq. (9), ηdf was replaced by its model-based value from Eq. (3) with
h = hdf .

Valid estimation of σ0gr and σ0df requires search windows with enough
pixels belonging to each category, otherwise they will be undetermined.
This can be avoided by expressing the forest backscatter (Eq. (2)) as a
function of canopy density only, using Eq. (3), and regressing between
backscatter and canopy density, thus also allowing α to be estimated:

σ0for =(1 − η)σ0gr + ησ0gre
α
log (1− η)

q + ησ0veg

⎛

⎜
⎝1 − eα

log (1− η)
q

⎞

⎟
⎠ (10)

This transformation is performed because, although global datasets
of canopy height (Lang et al., 2022; Potapov et al., 2021; Simard et al.,
2011) and tree cover density (DiMiceli et al., 2011; Hansen et al., 2013)
are both available, the latter are likely to be more reliable because of the
physical properties of the optical data from which they are both derived.

3.3. Merging of AGB estimates

The estimates of AGB from the C- and L-band SAR datasets from Eq.
(7) have distinct uncertainties due to different decreases in sensitivity of
backscatter to increasing AGB, the number of SAR observations, and the
quality of the SAR pre-processing. To merge them into a single value, we
adopted a further weighting scheme in which the estimate of AGB for a
given year y is obtained as:

AGBmerged,y=AGBCmt,y + wM,y

(
AGBLmt,y − AGB

C
mt,y

)
(11)

In Eq. (11), AGBCmt,y and AGBLmt,y represent the estimates of AGB from the
C-band and the L-band SAR datasets for a given year y obtained with Eq.
(7). The weight wM,y was designed to account for the sensitivity of AGB
to backscatter for C- and L-band represented by the model-based
transmissivity term and the number of SAR observations:

wM,y=

⃒
⃒
⃒
⃒

∂TL
∂AGB

̅̅̅̅̅̅̅̅
NL,y

√
⃒
⃒
⃒
⃒ −

⃒
⃒
⃒
⃒

∂TC
∂AGB

̅̅̅̅̅̅̅̅̅
NC,y

√
⃒
⃒
⃒
⃒ (12)

In Eq. (12) the suffices L and C on T and N indicate the frequency band
and the number of observations of the SAR dataset used in the retrieval.
To compute the derivative in Eq. (11), the transmissivity term is
expressed as a function of AGB through Eqs. (3) and (4):

T(AGB)=1 − η(h(AGB)) + η(h(AGB)) • Ttree(h(AGB)) (13)

Since the values obtained with Eq. (12) can be either positive or nega-
tive, wM,y in Eq. (11) corresponds to the normalized value from Eq. (12).

wM,y=

(
wM,y − min

(
wM,y

) )

max
(
wM,y − min

(
wM,y

) ) (14)

When the SAR dataset spans several years, better inter-annual agree-
ment of the AGB estimates is obtained by refining each of the values of
wM,y. For this, wM,y in Eq. (11) is first computed for each year separately
and then all wM,y are modified by minimizing the cost function (CF) in
Eq. (15):

CF=
∑YT− 2

y1=Y0

∑y1+2

y2=y1+1

⃒
⃒AGBmerged,y1 − AGBmerged,y2

⃒
⃒2 (15)

CF utilizes the AGB estimates obtained from Eq. (11) for pairs of
consecutive years (AGBmerged,y1 and AGBmerged,y2). In Eq. (15), Y0 and YT
represent the first and the last year (i.e., 2015 and 2021). As initial
values, the minimization used the values of wM,y from Eq. (13) for each
year. The final value for each of the wM,y coefficients between Y0 and YT
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was obtained by constraining the search space to ±20% of their initial
values. These values are then inserted in Eq. (11) to obtain the final
estimate of AGB for each of the years.

Defining weights at the 100 m pixel size of the maps risked strong
fluctuations appearing in the weights of adjacent pixels and the gener-
ation of artefacts. They are therefore generated at the scale of 0.1◦ and
then resampled with bilinear interpolation to the full resolution.

3.4. Uncertainty model

Accuracy describes how well the estimate of a certain quantity
matches its true value. Two global statistical measures of the accuracy of
an estimator are commonly used: bias, which is the expected value of the
difference between the estimated and true value, and precision, which
indicates the variability of the estimates and is usually quantified by the
SD. More complete descriptors could include, for example, confidence
intervals on the estimates or the full error distribution. The latter de-
scriptors are practically impossible to obtain in our case because the
errors of some of the parameters involved in the AGB retrieval scheme
could only be assumed. While bias can normally only be quantified if the
true value of AGB is known, the precision of an AGB estimator can be
quantified using an uncertainty model based on the SDs of the obser-
vations and the model parameters.

The SD of an AGB estimator using a single observation of SAR
backscatter is quantified by propagating the SDs of: (i) the measured
SAR backscatter (Section 2.1.3), (ii) the estimates of the forest back-
scatter model parameters α, σ0gr and σ0veg, (iii) the coefficient of the model
relating canopy density and canopy height, q, and (iv) the coefficients of
the model relating canopy height and AGB, p1 and p2. Each parameter of
the retrieval model was perturbed M times based on their individual
SDs, and the SD of the AGB estimate was taken to be equal to the SD of
theM AGB estimates from Eq. (5). This became stable whenM exceeded
100 but was substantially larger for fewer iterations.

The SD of the AGB estimate provided by the linear combination in
Eq. (7) consists of a variance component from the appropriately
weighted variances of the individual AGB estimates and a covariance
component that accounts for the correlation between errors in AGB
estimates.:

δ(AGBmt)2=
∑N

i=1
w2
i δ(AGBi)2 + 2

∑N− 1

i=1

∑N

j=i+1
wiwjCov

(
AGBi,AGBj

)
(16)

In Eq. (16), δ(AGBi)2 and δ(AGBmt)2 represent the variance of AGB es-
timate i and of the weighted average from Eq. (7), respectively. The
covariance term is expressed as:

Cov
(
AGBi,AGBj

)
= δAGBiδAGBjrij (17)

where rij is the correlation of errors between the estimates of AGB from
image observations i and j. Given the lack of extensive and evenly
sampled measurements of AGB, the correlation of errors between each
pair of AGB estimates from observation i and j is estimated with refer-
ence to maps of AGB derived from airborne LiDAR. We used data ob-
tained with the methodology described in Labriere et al. (2018) from
sites distributed across the U.S. (https://data.neonscience.org), the
Brazilian Amazon (Keller et al., 2019), Kalimantan (Ferraz et al., 2018)
and Australia (https://portal.tern.org.au/metadata/TERN/4ff0b4c9-c
fa0-4d09-9520-b5402adc583f).

The SD of the AGB estimate from the combination of the BIOMASAR-
C and -L AGB estimates is then obtained as:

δ(AGB)2=w2(L)δ
(
AGBmt,L

)2
+ w2(C)δ

(
AGBmt,C

)2 (18)

3.5. AGB validation

To assess the reliability of the AGB estimates, we computed: (i) the

RMSD between map- and plot-based AGB values relative to the average
reference AGB and (ii) the difference between map- and plot-based AGB
average values (bias). The RMSD was computed as a weighted mean of
the errors, where the weights corresponded to the ratio of the forest area
to the total forest area.

4. Results

4.1. Training and verification of the height-to-AGB structural model

Average AGB from NFI data is plotted against average canopy height
from ICESat-2 in Fig. 7, together with the corresponding fitted power-
law function in Eq. (4) for each of the strata in Fig. S9. The power-law
model reproduced the observed trend in strata from countries with
well-established NFIs (e.g., in Europe, Russia, or North America), while
for other strata the model fit was acceptable even though the association
between observations was moderate (R2 < 0.7). To test the reliability of
the set of models in Fig. 7, we compared them to local and regional
model curves published in the literature (Fig. S10), and predicted AGB
from ICESat-2 measurements of canopy height and, after averaging them
to 0.1◦ grid cells, compared them with the aggregated Tier 1 AGB values
(Section 2.4). Despite considerable dispersion, the data points in Fig. 8
clustered along the identity line with more than 60% of the variance in
the reference data being explained by the predicted values and an
overall negligible bias. The positive bias for AGB <50 Mg ha− 1 occurred
over Spain, to which we associated the coefficients for Central and
Southern Europe. The scaling coefficient p1 was likely too high because
it was driven by AGB values from Central Europe that were mostly larger
than 100 Mg ha− 1. The negative bias for AGB>400 Mg ha− 1 occurred in
tropical rainforest regions of South America and Africa, in part because
the strong filtering applied to the ICESat-2 data caused many segments
containing dense forest to be discarded, thus shifting the overall height
distribution towards lower values.

4.2. Training and verification of the forest backscatter model

Differences in the response of the backscatter to canopy density,
height and AGB mean that the estimation of the three unknown model
coefficients (σ0gr, σ0veg, and α) had to be adapted to the SAR frequency.
Figs. 9 and 10 show examples of estimates for σ0gr and σ0veg from
BIOMASAR-C and -L, respectively, in four tiles and stratified by local
incidence angle. Landsat-based tree cover and the corresponding back-
scatter values from Sentinel-1 (Fig. 9) and ALOS-2 PALSAR-2 (Fig. 10)
are also displayed.

For C-band, we set α = 2 dB/m following a synthesis of studies
dealing with attenuation of C-band microwaves in tree canopies (Askne
and Santoro, 2005; Cartus et al., 2019). Although attenuation is ex-
pected to decrease to approximately 1 dB/m under very dry or frozen
conditions (Santoro et al., 2002), the impact on fitting Eq. (8) to SAR
backscatter and tree cover values was negligible.

Santoro et al. (2011) proposed to set σ0gr equal to the median back-
scatter value for the "ground" pixels in the estimation window. Because
these pixels typically cover a range of different types of conditions (e.g.,
bare soils, grass, shrubs, young trees), the median value was occasion-
ally above the level expected for a surface with tree cover equal to 0%.
We therefore revised the definition of the σ0gr estimate by computing
percentiles of the backscatter distribution for tree cover less than 30%.
The first quartile was taken to be representative of a hypothetically
unvegetated surface (Fig. 9) and gave more accurate retrieval of AGB
than other percentiles (not shown here).

The original approach to estimate σ0veg relied on “dense forest” pixels,
defined as pixels with tree cover exceeding 75% of the maximum value
in the estimation window. Since this definition becomes questionable in
areas of sparse forest, we here relax the threshold and consider all pixels
that are potentially forest, i.e., with a tree cover >30%. However, the
original definition, which estimated σ0veg as the median of all backscatter
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values for dense forests, caused under-estimates of σ0veg. To correct this,
we obtained a first estimate of σ0veg by least squares regression of Eq. (10)
with σ0gr and α set as above (red circles in Fig. 9). Since this represents an
average backscatter for the densest canopies, it was then compensated
using Eq. (9) to obtain σ0veg (black asterisk at tree cover of 100% in
Fig. 9).

For L-band, σ0gr and α were first estimated from regressing Eq. (10)

using pairs of observations of tree cover and backscatter. The regression
was constrained with σ0df (Santoro et al., 2021a) and with 0.2 ≤ α ≤ 1.5
dB/m to avoid unrealistic model fits. Eq. (9) was then applied to esti-
mate σ0veg by compensating σ0df with the residual ground contribution
based on σ0gr. The estimates of σ0gr and σ0veg were then refined using a
second regression onto the observations of tree cover and backscatter.

Overall, the estimates of σ0gr and σ0veg were reasonable at both fre-
quencies (Figs. 9 and 10). In the area with steep topography (tile
N46E011), the relationships between backscatter and canopy density,
and therefore the estimates of σ0gr and σ0veg, differed significantly
depending on the local incidence angle. The compensation of σ0df to
obtain σ0veg was small; nonetheless, it avoided over-prediction of AGB
since even a change of a fraction of a dB has a substantial impact when
the observations have weak sensitivity to the variable of interest
(Santoro et al., 2021a).

The estimates of σ0gr and σ0veg per incidence angle bin followed regular
patterns for both C- and L-band (Figs. 9 and 10) which were fitted on a
tile-by-tile basis using quadratic functions. These models were then
applied to give spatially explicit estimates for each of the two parame-
ters given the local incidence angle for a given SAR backscatter image
(Fig. S11).

4.3. Estimation of AGB

The rather simple formulation of the forest backscatter model in Eq.
(5) and of the weighting rules in Eq. (7) paired with the weak sensitivity
of backscatter to AGB tend to introduce biases in the estimate of AGB
from a given sensor. Plots such as those in Fig. 11, where the histogram
of AGB from each SAR image in a tile is compared to the histogram of
AGB from the multi-temporal combination, can identify sources of er-
rors. For the left-hand panel of Fig. 11, the AGB for most of the pixels
was obtained from inverting the backscatter model, with only a few
pixels being assigned the maximum AGB. The multi-temporal

Fig. 7. Observations of average canopy height from ICESat-2 and average AGB at national and sub-national level (circles), and corresponding model fit based on Eq.
(4) for the 17 strata in Fig. S9. The 17 panels are here arranged by continent. Each panel reports the estimate of the model’s coefficients and their SDs. The model
fitted to the observations (solid curve) is extended up to 50 m (dashed curve) in accordance with the canopy height range shown in Fig. 4.

Fig. 8. Comparison of grid cell average values of AGB from field inventory data
and from Eq. (4) applied to ICESat-2 canopy height measurements (circles). The
filled circles represent the median value of AGB from the LiDAR-based pre-
dictions in the corresponding 50 Mg ha− 1 wide bin of AGB from the inventory-
based values. The color bar refers to the number of 0.1◦ grid cell observations in
each AGB bin. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)
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combination preserved this structure. For the middle panel in Fig. 11,
the shape of the histograms varied, and several images were charac-
terized by AGB estimates equal to the maximum AGB, with this being a
sign that the backscatter model did not always reproduce the level of the
backscatter observations. As a result, the weighted average of the single-
image AGBs propagated such biases and its histogram peaks between the
histograms of the single-image retrievals and the maximum AGB. The
right-hand panel of Fig. 11 is a more extreme version of this showing
histograms for single-image retrievals that peak at the maximum AGB as
well as close to 0 AGB. This is typical for SAR images with a small dy-
namic range and a model that flattens out at very low AGB and is
evident, for example, in tropical rainforests. Consequently, the weight-
ing introduces a bias which depends on how many SAR observations
gave AGB estimates close to 0.

To understand the relative performance of the AGB retrieval in the
two implementations of BIOMASAR, the estimates of AGB obtained with
the C- and L-band data are compared to a common reference, repre-
sented by the LiDAR-based canopy height in Fig. 12. Both sets of esti-
mates showed moderate agreement with canopy height but different
levels for a given canopy height. The BIOMASAR-L estimates spanned a
wider range than those from BIOMASAR-C. For heights below 15 m, the
L-band estimates were smaller than those from C-band, especially for the
shortest forests where the C-band values appeared unrealistically high.
For forests taller than 25 m, the L-band estimates were larger than the C-

band estimates and exhibited some sensitivity to canopy height, whereas
the C-band values often saturated. In the intermediate range of 15–25 m,
the estimates by BIOMASAR-C and -L were comparable. The large spread
of the AGB estimates for a given canopy height bin was partly due to the
sparse sampling of canopy height within a 1 km2 pixel compared to the
spatially explicit nature of the AGB estimates.

As anticipated from Fig. 12, the merging weighted the C- and L-band
datasets almost equally (Fig. 13) except for: (i) tropical rainforests,
where it relied exclusively on the BIOMASAR-L AGB estimates due to
under-prediction by BIOMASAR-C and (ii) short forests and vegetation,
where the proportion of BIOMASAR-L AGB estimates dominated.

Although the dataset of satellite images used to estimate AGB each
year consisted of the same type of observations, year-to-year fluctua-
tions of the estimates unrelated with accumulation or losses of biomass
were expected because of noise and the weak sensitivity of the back-
scatter observations to AGB. Fig. 14 shows the temporal standard de-
viation of the annual AGB estimates between 2015 and 2021. This was
mostly below 15 Mg ha− 1 and increased slightly with tree cover because
of the decreasing sensitivity to AGB in denser forest. An analysis of the
reliability of the AGB changes is deferred to a later study.

The set of AGB estimates for 2020 obtained with the CCI Biomass
algorithm is displayed in Fig. 15. Examples of AGB maps at full resolu-
tion are also included in Fig. S12 and highlight the spatial detail in the
AGB dataset. The highest AGB (>300 Mg ha− 1) was obtained in the

Fig. 9. Observations of tree cover density and Sentinel-1 backscatter stratified by tile (rows) and by incidence angle range (columns). Grey circles and vertical bars
represent the median value and the range of values per 2%-wide tree cover bins. The asterisks at tree cover 0% and 100% together with their vertical bars in black
represent the estimates of σ0gr and σ0veg, respectively, and their SD for the given tile and incidence angle range. Red circles represent the initial estimate of σ0veg from the
regression of Eq. (10). The SAR backscatter data consist of Sentinel-1, VH-polarization observations acquired during July 2020. Blank panels refer to cases not
represented in the datasets. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

M. Santoro et al. Science of Remote Sensing 10 (2024) 100169 

13 



tropical rainforests of South America, Africa and Southeast Asia, in
temperate rainforest of the Pacific Northwest between Canada and the
U.S., in southern Australia, and along the Andes between Chile and
Argentina. AGB decreased from temperate and tropical to boreal forest
in the northern hemisphere, while the southern hemisphere displays a
decrease corresponding to the transition from tropical wet to tropical
dry forest and savannah vegetation.

4.4. Standard deviation of the AGB estimates

The precision of the two parameters in Eq. (4) relating canopy height
to AGB was quite variable. The SD of the p1 values lay between 10% and
206% of the estimate, whereas the SD of p2 was largerly below 20% but
at most 35% of the estimated value (Fig. 7). In contrast, the precision of
the parameter q in (Eq. (3)) was below 5% of the estimated value
because of the tight correlation between canopy height and canopy
density (Kay et al., 2021).

For the forest backscatter model parameters, the SD was between

Fig. 10. Observations of tree cover density and ALOS-2 backscatter stratified by tile (rows) and by incidence angle range (columns). Grey circles and vertical bars
represent the median value and the range of values per tree cover bin. The asterisks at tree cover 0% and 100% together with their vertical bars in black represent the
estimates of σ0gr and σ0veg, respectively, and their SD for the given tile and incidence angle range. Red circles represent the initial estimate of σ0df. The SAR backscatter
data consist of ALOS-2 PALSAR-2, HV-polarization observations acquired during July 2020. Blank panels refer to cases not represented in the datasets. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Tile-based histograms of retrieved AGB from single SAR images using Eq. (5) (dashed curves) and from their weighted average using Eq. (7) (solid curves).
The histograms are plotted as a function of the difference between estimated AGB and maximum AGB in the tile.
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30% and 50% of the estimated value for σ0gr and around 10% for σ0veg at C-
band (Fig. 9). At L-band, it ranged between 10% and 40% of the esti-
mated value for σ0gr and was around 5% for σ0veg (Fig. 10). For the two-
way signal attenuation coefficient, α, we assumed a standard deviation
of 0.25 dB/m, which is roughly consistent with the range of values re-
ported in the literature (Chauhan et al., 1991; Kurum et al., 2009; Praks
et al., 2012; Sheen et al., 1994; Shinohara et al., 1992; Ulaby et al.,
1990).

Fig. 16 shows an example of correlation of the errors rij in Eq. (17)
between AGBs derived from pairs of Sentinel-1 monthly composites. It
was moderate for images acquired along the same or adjacent orbital
tracks, regardless of the month of acquisition of the images, and was
close to zero for images acquired along different orbital directions.

Although the LiDAR-based datasets included a wide variety of forest
types and structural conditions, we did not observe dependency of the
error correlation on seasonal conditions or polarization. For C-band, the
median of all temporal correlations of AGB was 0.52. A similar value of
0.5 was obtained for L-band, even though the L-band dataset was not as
temporally dense. These two constant error correlation values were
eventually used.

Knowing all SDs and the error correlation allowed the SD of the AGB
estimated from a backscatter measurement and, thereof, the SD of the
multi-temporal AGB estimate from Eq. (11) to be quantified. Fig. 17
shows an example of an AGB map from BIOMASAR-C and the corre-
sponding SD values, together with the components of the SD. The spatial
distribution of AGB compares well to the distribution of tree cover. The

Fig. 12. Distribution of BIOMASAR-C and BIOMASAR-L AGB estimates per canopy height bin for areas across the boreal and temperate zones (top row), and the
tropical and subtropical zones. Each area covers 20◦ × 20◦ and is centered at the location reported above the corresponding panel. Circles and vertical bars represent
the median value and the 5th-95th percentile interval of AGB estimates, respectively, for a given bin of canopy height. Each bin of canopy height is 2 m wide. AGB
and canopy height values in these plots are average values for 1 km2 pixels.

Fig. 13. Map of the weights applied for the BIOMASAR-L AGB estimates. The inset shows the distribution of the weights as a function of canopy height. For each bin
of canopy height, the circle and the vertical bar represent the median and the interval between the 5th and the 95th percentile of the weights.
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SD of AGB roughly scaled with AGB, being around 80% of the estimated
AGB in this example. Because of the moderate value used for the tem-
poral correlation of errors, the AGB SD was driven by the error covari-
ance component. For Sentinel-1, the covariance term was much larger
than the variance term, not least because the large number of Sentinel-1
observations used to estimate AGB reduced the variance term. Similar
results were obtained for BIOMASAR-L even though the difference be-
tween the variance and the covariance component was not as large due
to the smaller number of observations (not shown here).

The SD of the AGB estimates obtained from merging the C- and L-
band values was still substantial (Fig. 15), being on average 50% and
mostly between 30% and 85% of the estimated AGB. It was affected by
the proportion of C- and L-band estimates used. For the wet tropics,
where the estimate depended solely on L-band data, the SD was about
30%, 50% and 70% of the estimated AGB in Africa, South America and
Southeast Asia, respectively. In extra-tropical regions, where the AGB
estimates combined values from both SAR frequencies, the SD was
around 30–40% of the estimated value. The striping, particularly

Fig. 14. Standard deviation in time for the set of AGB estimates between 2015 and 2021, stratified by the tree cover. Each box refers to the interquartile range of
standard deviation values with the central marker being the median value. The whiskers extend to the most extreme data points not considered outliers. The outliers,
defined as data points away from the median by at least three standard deviations, are not plotted because these are associated with forest cover changes.

Fig. 15. AGB and AGB SD estimates for 2020 with a spatial resolution of 100 m. The AGB values are clipped between 0 and 500 Mg ha− 1 to enhance color contrast.
Likewise, the AGB relative SD values are clipped between 0% and 100% of the estimated AGB. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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evident in northern regions of Canada and Russia, is a consequence of
the rather low and uneven number of observations at C- and L-band
(Figs. 1 and 2).

4.5. Verification of the AGB estimates

The uneven spatial distribution of the plot inventory data (Fig. S6)
did not allow a global validation of the AGB estimates. Tier 1 grid cell

averages were used to identify systematic anomalies in the retrieval
algorithm, whereas Tier 2 and 3 plot-based values provided indications
on the retrieval accuracy, even if the results must be understood as being
local.

Fig. 18 compares map-based and plot-based Tier 1 grid cell averages
split by countries, regions or biomes (Fig. S6). It conveys that the spatial
distribution of AGB has been well captured globally (Fig. 18). However,
dispersion and under-prediction of AGB are evident in many regions as
indicated by the relative RMSD values, which were between 36% and
80%. These results mainly come from dispersion except for India and
Tasmania, where they were a consequence of the large bias. Large biases
also occurred for other regions (Yucatan, Guyana, West and East Africa,
Mozambique, Madagascar, Nepal and Western Australia), where the
dispersion was more moderate than in regions with lower biases (e.g.,
Alaska, Nova Scotia, Sweden, Croatia).

Fig. 18 indicates that retrieval performance differed depending on
the region. The strongest agreement between reference and map-based
values was obtained for three regions with completely different forest
structures and AGB levels (tropical forests of the Amazon and the Congo
Basins and forests in China and Spain). The few cases of over-prediction
occurred for AGB below 100 Mg ha− 1 both in boreal (Nova Scotia and
Sweden) and tropical (Laos & Vietnam) forests. The more common
under-prediction started at different levels of reference AGB and was not
related to climatic or forest conditions. Almost the whole of Yucatan,
Guyana, the Netherlands, Croatia, Mozambique, India, Nepal, Western
Australia and Tasmania exhibited under-prediction, while under-
prediction only in the high AGB range occurred in Sweden, West and
East Africa and East Australia.

At Tier 2 and 3 levels, the map-based and plot-based AGBs agreed
albeit a substantial dispersion along the identity line (Fig. 19) in
particular for the Tier 2 data, as shown by the larger relative RMSD
compared to Tier 3 and the similar bias values. Both under- and over-
prediction occurred up to 400 Mg ha− 1 although mostly moderate
(Fig. 19). Under-prediction instead characterized plots with AGBs >400
Mg ha− 1, thus explaining for both Tiers the negative bias. For the Tier 2
plots with AGB >700 Mg ha− 1, which were mostly located in Tasmania,
the retrieval algorithm did not detect any sensitivity and underestimated

Fig. 16. Matrix of error correlations for Sentinel-1 AGB estimates for the NEON
CHEQ site in the U.S. located at 90◦W, 45◦N. The index on each axis represents
the sequential index of each monthly backscatter average covering the site (i.e.,
1, 2, 3 etc. mean first, second, third, etc. average image in 2017). Odd integers
refer to VH-polarized images. Even integers refer to VV-polarized images. The
correlation matrix shows several blocks, each corresponding to a set of 24
images (i.e., 12 months and 2 polarizations) from a given orbital track covering
the site. Empty blocks imply that the two orbital tracks being correlated did not
have any overlap.

Fig. 17. AGB estimates from BIOMASAR-C, number of Sentinel-1 monthly averages in 2020 and contextual information from the Landsat tree cover dataset for a 1◦

× 1◦ tile in the top row. The bottom row shows the maps of AGB SD together with its variance and covariance terms. These panels express SDs relative to the
estimated AGB.
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AGB by a factor 2 to 5.

5. Discussion

5.1. Data

The development of the global AGB retrieval approach was driven by
repeated satellite data that are available globally with high-to moderate
spatial resolution and some sensitivity to forest structure. As a result, the
pool of observations was restricted to data from four sensors, two SAR
sensors capable of wall-to-wall repeat coverage on an annual basis
(Figs. 1 and 2) together with sampled data from two spaceborne LiDAR
missions. Spatially explicit estimation of AGB exploited C- and L-band
backscatter from imaging sensors. At these frequencies, the sensitivity of
radar backscatter to forest structural properties is mostly related to tree
cover (Figs. 9 and 10), and a more suitable biomass predictor would be

from single-pass SAR interferometry that, similarly to laser instruments,
generates observations containing information on the vertical and hor-
izontal distribution of vegetation. Estimating canopy height from
interferometric elevation requires knowledge of the terrain elevation
and the degree of penetration of the microwaves into the canopy
(Walker et al., 2007). The lack of global digital surface models and
partial knowledge of scattering mechanisms in forest canopies currently
prevent this.

Unlike interferometric datasets, the signal recorded by a laser in-
strument contains a ground return, so an external terrain elevation
dataset is not required to estimate vegetation height. In addition, the
signals acquired by spaceborne LiDAR systems are better understood
and their availability make them a prominent candidate to support
global estimation of AGB. The sampling nature of spaceborne LiDAR
data, however, means that even after several years of acquisitions, the
coverage is not wall-to-wall and their greatest value is in calibrating

Fig. 18. Comparisons between map-based and plot-based AGB values for Tier 1 plot data spatially averaged to 0.1◦ (grey circles). The data are grouped per region
(see Fig. S13). In each panel, the map-based AGBs were also binned over 10 Mg ha− 1 wide ranges with filled circles representing the median mapped AGB per bin.
The color bars represent the number of grid cells within a given AGB interval. Each panel includes the root mean square difference (RMSD) between map and field
inventory AGB relative to the mean value of the reference AGB and the bias, i.e. the difference between mean values of the map AGB and the reference AGB. The
asterisks on the identity line represent the maximum AGB in each region. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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some elements of the AGB retrieval model rather than providing the
model itself.

We exploited the global observing capabilities of ICESat and ICESat-2
data in preference to GEDI data, despite GEDI being designed to observe
terrestrial vegetation. Hence, our AGB estimates are independent of
those obtained by GEDI (Duncanson et al., 2022) which assists under-
standing of the strengths and weaknesses of their respective retrieval
models (Hunka et al., 2023). However, regardless of the LiDAR system,
the structural metrics derived from the observations still suffer from
uncertainties due to mechanisms that are only partly understood
(Milenković et al., 2022; Neuenschwander and Pitts, 2019). For
example, despite strong filtering to remove outliers, unrealistically high
values of canopy height are observed in sparsely vegetated regions
(Fig. 4). Additional filtering would cause large gaps in very dense forests
where the lidar datasets used here already miss a large proportion of
samples (Fig. 4). Such uncertainties propagate through the retrieval
chain, affecting among others the maximum canopy height and
maximum AGB, which is a strong control on the performance of the AGB
retrieval. Our definition of the maximum canopy height was effectively
constrained by the noise in the ICESat-2 dataset and the sparse sampling
after filtering. This led to underestimation of the maximum AGB in some
regions (Fig. 18). A wider set of samples from spaceborne LiDAR and
better knowledge of their properties will likely improve the dataset of
canopy heights and reduce the uncertainty of the maximum canopy
height estimates.

5.2. Methods

The model relating canopy height to AGB is less characterized than
the structural model relating canopy height and canopy density (Kay
et al., 2021) because a global dataset of reference AGB values is un-
available. Spatial representativeness could only be achieved at the
expense of spatial detail by using AGB average values at subnational
level from NFIs. The predictions from the generalized structural models
broadly agree with the dataset of reference AGB values (Fig. 8) thanks to
the balancing of the NFI-based averages across the 17 strata (Fig. 7).
However, the validation raises some issues on bias. In addition, the SDs
of the model parameters occasionally exceeded 100% of the estimated
values, implying considerable uncertainty in the structural models,
which can be primarily related to the quality of the reference AGB data.
The NFI statistics were not harmonized with each other, and there are

differences in the definitions of forest land underlying the NFI average
values. The strata used to group the NFI data were based on
macro-ecological patterns, which smoothed out small scale variability in
the relationship between canopy height and AGB, for example due to
spatial variability of wood density or growth factors. In addition, the use
of average values instead of AGB measured in plots and footprints may
alter the shape of the model, leading to over- or under-estimates when
applied at the spatial resolution of the satellite image data.

Quantifying the impact of a mismatch of spatial scales was attempted
by comparing our generalized structural model with the few regional
models published in the literature, which were based on collections of
field measurements taken at sub-hectare scale (Fig. S10, left hand side).
The AGBs predicted by the two realizations of the structural model were
different, in particular in extra-tropical regions. The uncertainty of the
modeled backscatter caused by the choice of structural model was
comparable to the uncertainty of the backscatter measurements (i.e.,
<0.5 dB, Fig. S10, top right panel). Only when the AGBs predicted by the
structural models differed by more than 100% (Fig. S10, bottom left
panel) did the Water Cloud Model associate a manyfold difference in
terms of AGB for a given level of the SAR backscatter (Fig. S10, bottom
right panel). Future studies should consolidate these indications and
assess to which degree the final estimates of AGB are affected by the
spatial characterization of the structural function.

Despite its simple formulation, the retrieval model was able to
reproduce the relationship between AGB and SAR backscatter at C- and
L-band (Figs. 9 and 10). Tile-by-tile estimation of the model parameters
and stratification of the estimation by incidence angle range helped to
adapt the retrieval to local conditions. Nonetheless, the weak correlation
between SAR backscatter and forest variables resulted in considerable
dispersion in the estimates (Figs. 9 and 10). The model parameters, in
particular σ0gr, had uncertainties manifesting either as biases compared
to more realistic values (see tile S09E027 in Fig. 9) or large standard
deviations (see tile N00E011 in Fig. 10).

Caveats associated with the AGB retrievals at each frequency
(Fig. 12) motivated the merging of AGB estimates using a procedure
designed to account for the physics behind the relationship relating
forest structure and radar backscatter. Favoring L-band estimates of AGB
for the lowest and highest AGBs (Fig. 14) while balancing the estimates
in the intermediate range helps to avoid systematic errors that would
affect an AGB dataset based on either the C- or the L-band observations.
Although the objective of this paper is not to investigate the temporal
features of the AGB estimates, we found little variability in the AGB
values over time (Fig. 13), thus building confidence in the temporal
trajectories of repeated AGB estimates. Keeping the design of the
merging approach simple, however, implies that only systematic errors
are coped with.

Because the retrieval approach is entirely parametric, the estimation
process can be split into several basic steps each of which can be tuned.
In addition, training the retrieval model without using AGB reference
measurements makes it possible to produce a temporal sequence of AGB
estimates. However, a consequence is that the retrieval model cannot be
adapted to local conditions finer than a certain spatial scale (e.g., 1◦).
Use of non-parametric machine learning models could perhaps better
address local spatial variation but would require spatially dense refer-
ence AGB datasets contemporary with the EO predictors. Such datasets
are unavailable for most of the planet; nonetheless, recent studies
addressing the training data requirements of retrieval models for global
applications have laid the foundations for evolution of algorithms in the
years to come (Chave et al., 2019; Labrière et al., 2023).

5.3. AGB estimates

Relying on a fully parametric and physics-based approach allowed
weaknesses in the approach to be identified and provided indications of
the extent to which improvements are possible.

The strong agreement (Fig. 19) for regions with Tier 2 and 3 data and

Fig. 19. Map-based and inventory-based AGB values for Tier 2 and 3 data. To
improve presentation, axes are truncated at 700 Mg ha− 1. The distribution of
map-based AGBs for inventory-based values greater than 700 Mg ha− 1 are
represented by the filled circle (median value) and the vertical bar (5th to 95th
percentile) at AGB = 750 Mg ha− 1.
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tropical rainforest (Amazon and Congo Basin), Mediterranean forest
(Spain) and mostly subtropical forest (China) (Fig. 18), as well as across
some of the boreal forest regions (Alaska and Nova Scotia) indicates that
the components of the CCI Biomass retrieval algorithm (structural
functions, forest backscatter model and merging) are well configured.
Nonetheless, several regions displayed a tendency to under-prediction,
arising from a combination of approximations in the calibration of the
forest backscatter model and of the structural model that relates canopy
height to AGB.

Because of the decreasing sensitivity of backscatter to increasing
AGB and the calibration of the retrieval model without field measure-
ments, the retrieval was strongly affected by the data on maximum AGB
(Fig. 4). Large under-prediction arose when the estimated maximum
AGB is considerably lower than the value predicted from the field data
(Yucatan, Guyana, Nepal, Western Australia and Tasmania in Fig. 18).
This is partly explained by gaps in the ICESat-2 dataset in the tallest
forests due either to the sampling (e.g., in Tasmania, the canopy height
by ICESat-2 hardly exceeded 40 m, Fig. 4e) or the strong filtering that
removed likely realistic values of canopy height. Another reason is that
the structural model relating canopy height to AGB in Eq. (4) is poorly
constrained, as was the case for Central Asia and Southeast Asia in Fig. 7.
Finally, the coarse characterization of the structural model explains the
non-systematic under-prediction in a few regions (e.g., the Netherlands,
Croatia, West Africa, Mozambique and East Australia). While an esti-
mate of maximum AGB cannot be avoided, the retrieval should advance
use of this information beyond treating it solely as a cut-off value.

Imperfect calibration of the forest backscatter model explained cases
where the estimated AGB flattened out for increasing AGB (Sweden,
Yucatan, Guyana, East Africa, Madagascar and Laos & Vietnam in
Fig. 18). Here, the histogram of the AGB estimates from the individual
SAR images presented either strong bimodality (Guyana and Laos and
Vietnam; see, for example, tile N05W060 in Fig. 11) or strong temporal
variability (Sweden, East Africa and Madagascar; see, for example, tile
N58E015 in Fig. 11). The set-up to calibrate the forest backscatter model
is reliable (Figs. 9 and 10), and an error of a fraction of a dB when
estimating σ0gr or σ0veg may be considered acceptable, but the conse-
quences on the final AGB estimates can be catastrophic as it shifts the
whole histogram of AGB values from a given image to considerably
lower or higher values.

To get further understanding of the errors, we compared plot-based
and map-based AGB estimates from the precursor to this study (Santoro
et al., 2021a) (Fig. S14), which was based on a smaller number of SAR
observations and a more empirical set of functions relating the obser-
vations to AGB. In summary, we identified four systematic patterns,
summarized below.

• The estimation of AGB improved at sites in the boreal zone that were
characterized by a considerable contribution of the C-band AGB
component as a consequence of the cross-polarized Sentinel-1
channel (Alaska, Nova Scotia, Sweden low AGB levels).

• Availability of multi-temporal L-band data improved the AGB esti-
mates in the wet tropics (Amazon & Congo Basin).

• Sites where the values of the maximum AGB differed in this study
and in the precursor were characterized by substantial differences in
terms of biases (e.g., West Africa, Madagascar, Western Australia).
The bias was always a consequence of an incorrect maximumAGB. In
Santoro et al. (2021a), the maximum AGB was based on an extrap-
olation from various datasets. In this study, it was derived from the
ICESat-2 metric of canopy height and the height-to-AGB structural
function. Both approaches have drawbacks. Noisy values in the
ICESat-2 dataset and the coarse resolution of the structural function
explain the biases in our estimates. Constraining the estimation of
maximum AGB with local information may improve the spatial
characterization of this variable.

• The inability of the method to estimate the AGB beyond a certain
level in Sweden, Yucatan, Guyana, East Africa, Madagascar (Fig. 18)

is likely due to an overestimate of the σ0veg coefficient at L-band. Its
estimation relies on an estimate of canopy density of dense forests
using Eq. (9), which leads to an overestimate of σ0vegwhen the canopy
density of dense forests is underestimated. In Santoro et al. (2021a),
this value was derived from a map of canopy density. Here, the
canopy density of dense forests was derived with the structural
function in Eq. (3) starting from an estimate of the height of dense
forests, which relied on the ICESat-2 dataset (Fig. 4). In those re-
gions, we found that the ICESat-2-based canopy density of dense
forests was smaller than the value derived from the canopy density
map. The sparse spatial sampling of the ICESat-2 dataset might not
have represented the population of canopy density values captured
by the map and might have led to underestimation of the height, and
thereof the canopy density, of dense forests.

The considerable biases and standard deviation affecting the AGB
estimates (Fig. 15) are a consequence of the uncertainties affecting the
EO predictors (Fig. 3) and the design of the retrieval model. The un-
certainty associated with the EO data can be reduced by relying either
on data sources that are more closely related to the structural properties
of a forest (TanDEM-X interferometry, future BIOMASS mission) or on
the same type of backscatter observations considered in this study but
with higher radiometric accuracy (future Sentinel-1 Next Generation,
ALOS-4 PALSAR-3 and NISAR missions). Algorithmic advances are un-
likely to yield a substantial reduction in the model-related part of the
uncertainty unless calibration of the models to estimate AGB is aided by
spatially dense sets of field measurements.

The validity of the AGB estimates is affected by the limitations of the
AGB ground reference data. Historically, NFI data have been developed
to assess forest resources, such as growing stock volume, but not to
evaluate AGB stocks. The inclusion of NFI methods for AGB assessment
is progressing but remains challenging, potentially explaining why the
calibration of Eq. (4) is uneven (Fig. 7). A key problem is that most NFI
estimates are based on small randomly drawn circular plots or transects,
while AGB density estimation is uncertain when the forest inventory
plots are smaller than 0.25 ha and when plots have high edge to area
ratios (Réjou-Méchain et al., 2014). A second problem is that NFIs are
scarce in the tropics and have only been implemented recently in the
major tropical forest countries. This results in a latitudinal imbalance in
the AGB ground reference data. Permanent inventory plots provide a
crucial alternative source of information (Davies et al., 2021; Blundo
et al., 2021) especially at the stage of validation, and they can be
complemented with airborne laser scanning campaigns, ideally above
the sites where inventory plots are available (Chave et al., 2019). The
recent GEO-TREES program, which aims to provide biomass reference
values from more than 100 forest landscapes and more than 200 sup-
plementary sites world-wide, can help to address this gap (Labrière
et al., 2023).

6. Conclusions

We have described and evaluated the CCI Biomass global AGB esti-
mator, which is based on high-to moderate-resolution satellite data. We
included an in-depth analysis of factors that affect the AGB estimation,
namely satellite data, estimation methods and the use of AGB reference
data. The satellite data component is constrained by the availability of
repeated wall-to-wall coverage with a spatial resolution of about a
hectare. SAR backscatter by Sentinel-1 and ALOS-2 PALSAR-2 are the
only global satellite datasets fulfilling this requirement. However, the
weak sensitivity of SAR backscatter from these sensors to forest variables
means that information on forest structure from satellite LIDAR obser-
vations is needed to constrain the retrieval of AGB. Potential estimation
biases caused by training the retrieval model with AGB measurements
that are unevenly distributed in space were dealt with by using auxiliary
spatial data that match the definition of the retrieval model parameters.

Such a generalized approach allows the overall spatial distribution of
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AGB in woody vegetation worldwide to be well captured, but with local
under- or over-predictions of AGB, and considerable dispersion in the
estimates. Availability of repeated, co and cross–polarized SAR back-
scatter observations at C- and L-band improved the retrieval in boreal
and tropical forests, respectively, compared to previous endeavors based
on a similar retrieval framework. Novel spaceborne LiDAR observations
allow for a fully parametric, physics-based retrieval approach. However,
sparse spatial sampling and problems in characterizing LiDAR signals
from vegetation are currently limitations that are likely to be overcome
as more data becomes available.

The retrieval framework can be extended to other satellite data with
the same physical background as those used in this study (e.g., from SAR
interferometry or low-frequency SAR). The accuracy of the estimates is
likely to improve when they are combined with such observations
because they are more sensitive to structural properties of vegetation.
The retrieval would furthermore benefit from a global, spatially dense
dataset (e.g., such as those collected by NFIs) of reference AGB values,
which ideally shared the same measurement protocol and had an open
access policy. This would allow the retrieval model to be trained without
relying on the approximations and generalizations made here to
generate realistic estimates of AGB.
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