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Abstract
The Western Ghats (WG) include a narrow belt of rainforests exposed 

to the south-west Indian monsoon. They shelter diverse forest types and 
rare endemic biodiversity, making the WG one of the 25 major biodiversity 
hotspots on Earth. The WG are also one of the most threatened biodiversity 
hotspots, as climate change and deforestation are expected to strongly 
affect rainforest cover and composition. Here we assess the vulnerability of 
endemic tree species to ongoing and future global changes, with statistical 
models of environmental changes and Species Distribution Modeling 
(SDM). In the absence of any action, we expect that the rainforest would 
disappear from the area by 2070, entailing massive extinction. In addition, 
climate change should increase species rarity and extinction risk of endemic 
trees that are specialized to specific rainfall regimes related to monsoon. 
We discuss the interest and limits of ecological models for guiding future 
conservation strategies and safeguarding the unique biodiversity in the 
area. We discuss the advantages and challenges of assessing and predicting 
threats using SDM techniques, which should be of general significance 
for the conservation and management of other biodiversity hotspots in 
South-East Asia.
Keywords: Biodiversity hotspot, Climate change, Conservation,    
Deforestation, Rainforest tree diversity, South India
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5.1 Introduction
The Western Ghats of India (WG) are one of the 25 most important 

biodiversity hotspots of the world (Myers et al., 2000). Sharp environmental 
gradients characterize this mountain range, which have determined past di-
versification and extant species distributions (Pascal, 1988; Bawa et al., 2007; 
Ramesh et al., 2010, Bose et al., 2016; Bose et al., 2019). The area is subject 
to intense and rapid changes in land cover and land use (Kale et al., 2016), 
resulting in decreasing forest cover and threats to endemic species. In addition, 
many species occur at low local density and low regional frequency, which 
increases their vulnerability to habitat destruction (Davidar et al., 2018).

Among the 50,369 plant species globally assessed in the IUCN Red 
List (accessed on  28 October 2021), more than a quarter are tagged “needs 
updating”. Around 16% of the total estimated number of plants (Paton et 
al., 2008) are actually red listed, and biodiversity hotspots likely host most 
undiscovered species (Joppa et al., 2011). This situation underlines an urgent 
need to further sample and assess the dynamics of species in biodiversity 
hotspots such as the WG. Identifying and prioritizing the species most at risk 
in the WG should guide the efforts of local stakeholders.  

We expect that climate change should impact forest ecosystems and 
endemic tree species adapted to the highly seasonal monsoon regime particular 
to the WG (Das and Behera, 2019). For instance, dryer and longer dry seasons 
should negatively affect Myristicaceae trees that live in swamp and humid 
forests (Priti et al., 2016). In addition, as in other tropical forests of the world, 
high population density and economic development in the WG would entail 
continuing reduction in forest cover in the area (Reddy et al., 2013). We thus 
also expect deforestation to represent a major threat to forest biodiversity in 
coming decades.

We can anticipate that ongoing threats to ecosystems and biodiversity 
will continue to increase in the future, but we currently lack quantitative 
assessments that could inform the debate on conserving the natural heritage 
and guide further actions. To objectively and quantitatively analyze species 
distributions, previous works have used statistical, ecological models of species 
and forest distribution for prioritizing conservation areas in Southeast Asia 
(Hughes, 2017), as well as in the WG (Prasad et al., 1998; Amarnath et al., 2003; 
Das et al., 2006; Athira et al., 2017). 

Species Distribution Models (SDM) identify potential species 
distributions and help to detect their changes through time, which allows 
defining areas of conservation importance and greater sustainability under 
future environmental changes (Elith and Leathwick, 2009). For instance, 
Joshi et al. (2017) used SDM to assess hotspots of rattan species in WG, and 
Giriraj et al. (2008) to identify potential areas of the high-elevation endemic 
Rhododendron nilagaricum. Gaucherel et al. (2016) used SDM based on climate 
predictors to identify the potential distributions of endemic trees in WG, and 



77Munoz, Estopinan, Bose, Pélissier & Vieilledent

to delineate important areas for conservation. Pelletier et al. (2018) and Stévart 
et al. (2019) assessed potential population loss and range reduction to estimate 
the potential conservation status of tropical forests at the global scale in the 
future. However, there is no recent assessment of the joint impact of climatic 
changes and deforestation on the future of forest biodiversity in the WG 
biodiversity hotspot.

We assessed the expected change of suitable habitat area under scenarios 
of future climate change and anthropogenic deforestation. We used the SDM 
approach to forecast future threats to endemic tree species, which should help 
in the design of appropriate conservation strategies.

5.2 Material and methods
5.2.1 Study area and endemic species data

We delimited the study area based on the world map of ecoregions 
(Olson et al., 2001). We selected polygons belonging to the categories "North 
WG montane rain forests", "North WG moist deciduous forests", "Malabar 
Coast moist forests", "South WG montane rain forests", “South WG moist 
deciduous forests", "Malabar Coast moist forests", "South WG montane rain 
forests", "South WG moist deciduous forests". The resulting area is a 1600 
km-long, narrow escarpment facing India’s southwestern coast and receiving 
a broad gradient of rainfall depending on monsoon exposure (Pascal, 1988). 
The wet and moist forests here are isolated from the evergreen forests of north 
eastern India and Indochina by the rapid decline in rainfall towards the leeward 
east and the north, contributing to a unique evolutionary and biogeographic 
heritage (Bossuyt et al., 2004). We also mapped the administrative limits from 
Global ADMinistrative database (https://gadm.org/), and the protected areas 
from the World Database on Protected Areas (https://www.protectedplanet.
net).

The Atlas of WG endemic trees (Ramesh and Pascal, 1997) reports 
occurrence data based on three sources: (1) herbarium specimens, (2) published 
data and (3) results of intensive field surveys conducted in 1970–1990 by 
botanists from the French Institute of Pondicherry (FIP). We built a dataset 
from the Atlas including 8,316 occurrences corresponding to 165 taxa with at 
least 12 occurrences each. 

We get up-to-date IUCN status of the selected endemic trees by using the 
rredlist package in R (functions rl_threats and rl_status). 

5.2.2 Climatic data
We used present-day climatic data for modelling species distributions 

from available occurrence data. We considered 19 bioclimatic variables 
provided in the CHELSA (Climatologies at High resolution for the Earth’s Land 
Surface Areas) database. We selected four of these variables with less correlation 

https://gadm.org/
https://www.protectedplanet.net
https://www.protectedplanet.net
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(≤0.7): mean annual temperature (bio1), temperature seasonality (bio4), annual 
precipitation (bio12), and rainfall seasonality (bio15). The climatic data from 
meteorological stations were averaged over several decades (1973-2013), and 
interpolated to provide raster maps at 1 km x 1 km resolution.

 We considered the future climate scenario SSP 5 (Shared Socioeconomic 
Pathway), representing conventional development, and RCP 8.5 (Repre-
sentative Concentration Pathway, O’Neill et al., 2014), corresponding to  an 
atmospheric CO2 concentration increase to 1135 ppm in 2100 (MIROC-ES2L 
Global Climate Model). This scenario should well represent climate change in 
next decades under a business-as-usual economic policy (Schwalm et al., 2020). 
We got the predictions from the CHELSA database for the selected climatic 
variables for the years 2040, 2060, 2080 and 2100.

5.2.3 Forest cover and deforestation data
We classified pixels of Landsat images at 30 m resolution every 5 years 

from 2000 to 2020 (Vancutsem, 2020) as either including natural moist tropical 
forest or not. The approach excluded plantation and regrowth from the forest 
category, but included degraded forests. We classified forested and deforested 
pixels by comparing forest covers between 2000 and 2010 (Vancutsem et al., 
2020). We related the resulting binary deforestation index to 8 predictors, i.e., 
topography (altitude and slope), accessibility (distances to nearest road, town, 
and river), forest landscape (distance to forest edge), deforestation history 
(distance to past deforestation), and land conservation status (presence of a 
protected area). We obtained elevation (in m) and slope (in degree) at 90 m 
resolution from the SRTM Digital Elevation Database v4.1 (http://srtm.csi.
cgiar.org/). We calculated distances (in m) to nearest road, town and river at 150 
m resolution based on OpenStreetMap (OSM) (https://www.openstreetmap.
org/). We calculated the distance to the forest edge at 30 m resolution based 
on the forest cover map in 2010. Distance to past deforestation in 2010 was 
computed at 30 m resolution based on the 2000-2010 forest cover change map. 
Data on protected areas were rasterized at 30 m resolution.

We performed logistic regression of the deforestation index according 
to the 8 predictors for 10000 pixels randomly drawn in each forest/non-forest 
category. To account for the residual spatial variation in the deforestation 
process, we included an additional random effect for 10 km × 10 km spatial 
cells covering the study area. We chose this grid resolution in order to have a 
reasonable balance between a good representation of the spatial variability of 
the deforestation process and a limited number of parameters to estimate. We 
assumed that random effects were spatially autocorrelated through an intrinsic 
conditional autoregressive (iCAR) model (Besag, 1991). We performed 
backward variable selection based on model AIC to select the most influential 
predictors. We estimated coefficient values in the final parsimonious model by 
performing hierarchical Bayesian inference (Vieilledent, 2021). We interpolated 
at 1 km the spatial random effects at 10 km using bicubic interpolation.

http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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We forecasted deforestation trends until 2100, based on the model 
fitted for the period 2000-2010, by assuming a "business-as-usual" scenario. 
We calculated the density of forest pixels within 1 km x 1 km cells at all dates. 
Figure 1 shows the forest cover in 2000 (left) and projected in 2040 (center) and 
2060 (right). Although forests are expected to persist in most steep slopes of 
the WG, deforestation is expected to be considerable in low and mid-elevation 
areas. When projecting the trend in 2070 and later, the model predicted that no 
wet tropical forests would persist in the area.

 
 

 

Figure 1. Map of wet and moist tropical forests in Western Ghats of India, derived from 

Landsat images in 2000 (left), and projected in 2040 (center) and 2060 (right) under a 

“business-as-usual” scenario of deforestation. 1kmx1km cells with at least 10% forest cover 

are shown across a gradient of red color (darker = greater forest cover). 

 

Figure 1. Map of wet and moist tropical forests in Western Ghats of India, derived 
from Landsat images in 2000 (left), and projected in 2040 (center) and 2060 
(right) under a “business-as-usual” scenario of deforestation. 1km x 1km cells 
with at least 10% forest cover are shown across a gradient of red color (darker = 
greater forest cover).

5.2.4 Species distribution modelling
We performed Maxent Species Distribution Models (SDM) using 

the function maxent in R package dismo. We selected 165 species with at 
least 12 recorded occurrences, because SDMs need enough information to 
provide reliable assessment of species ecological niches. The model provided 
potential habitat suitability maps encoded with normalized probabilities. Our 
next objective was to obtain a measure of potential habitat loss. We defined 
binary maps of potential distributions by thresholding the probabilities to the 
maximum of True Skill Statistic (TSS, the sum of specificity and sensitivity 
minus one, Allouche et al., 2006), which is recommended for SDMs with 
presence-only data (Liu et al., 2013). We used the function AOO.computing from 
the ConR package (Dauby et al., 2017) to obtain a quantified area reflecting the 
species potential habitat, with default parameter values (i.e., 2 x 2 km² cell size).  
Finally, we assessed the relative habitat loss for a given species s between two 
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given years i and j (j > i) as the ratio:

This prediction can be used for prioritizing sampling and assessment 
efforts towards species subject to greatest loss of potential habitat in the WG.

We trained the Maxent SDM using the 1998 Atlas occurrence data 
(randomly split for each species into 80% occurrences for training and 20% for 
testing), a 2000 forest raster and the four present-day bioclimatic variables. We 
quantified the permutation importance of each predictor as the loss in model 
performance (in terms of AUC) when the predictor values were randomly 
permuted (Altmann et al., 2010). 

We projected future species distributions under three distinct scenarios 
of environmental changes:

• With deforestation only, as it is supposed to be the main threat for 
tree population persistence over a short term. We projected future 
species distributions under forecasted deforestation patterns in 2035, 
while keeping the climatic variables as in 2000. 

• With only climate change, under the 2040 projection of bioclim 
variables for RCP 8.5, (O’Neill et al., 2014), modelled with 
MIROC-ES2L (Hajima et al., 2020). We kept the forest raster as in 
2000, closest to Atlas publication date, thus neglecting any further 
deforestation.

• With both climate change and deforestation, using the four projected 
bioclim variables of 2040 along with the 2035 forest cover raster.

Synthetic maps of potential richness loss were eventually created under 
each hypothesis by summing SDM output probabilities over all species pixel 
by pixel  (Grenié et al., 2020), and we quantified the temporal variations  as the 
ratios between different years.

5.3 Results
5.3.1 Current conservation status

192 out of the 340 (56%) endemic tree species of the WG are reported 
in the IUCN Red List, among which 24 are critically endangered, 85 are 
endangered and 55 are vulnerable (Figure 2). 84% of red listed species were 
assessed in 1998, just after the publication of the Atlas (Ramesh and Pascal, 
1997).

5.3.2 Forecasted impacts of deforestation and climate change
Based on the Landsat image analyses, we found that  forest cover in the 

study area decreased by 6% between 2000 and 2010, and by 8% between 2010 
and 2020. Our deforestation model showed  that rainforest cover in the WG 
should disappear between 2060 and 2070 (Figure 1). Without action for slowing 

𝐴𝐴𝐴𝐴𝐴𝐴!,# 	−	𝐴𝐴𝐴𝐴𝐴𝐴!,$
𝐴𝐴𝐴𝐴𝐴𝐴!,$

 

 
Equ 1 
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Figure 2. Pie plots  giving the percentage of WG endemic tree species per  (a) date of last 

assessment in IUCN Red List, (b) IUCN category at last assessment. 

 

Figure 2. Pie plots  giving the percentage of WG endemic tree species per  (a) date 
of last assessment in IUCN Red List, (b) IUCN category at last assessment.

down deforestation and maintaining strict protection in protected areas, this 
scenario would entail a massive extinction crisis in the WG hotspot within the 
21st century.

We quantified the mean permutation importance of each predictor for all 
species (percentage in brackets):  BIO1 = Annual Mean Temperature (20.7%), 
BIO4 = Temperature Seasonality (38.5%), BIO12 = Annual Precipitation 
(10.0%) and BIO15 = Precipitation Seasonality (13%). The forest predictor 
had 18% mean permutation importance. Therefore, although deforestation 
should entail rapid habitat destruction and population extinctions, sensitivity 
to climate change is also expected to influence future tree species distribution.

Figure 3 shows the potential loss of species richness based on the 
scenarios of climate and forest cover changes. Deforestation should first heavily 
impact WG lowlands, especially in the south-western part of the WG. Climate 
change should drive loss in almost all areas, with the higher elevations being 
relatively spared and the eastern flanks of the WG being particularly impacted. 
Protected areas in northern and mid WG would be particularly vulnerable 
to  the effects of climate change. In comparison, southern uplands should be 
relatively well preserved. The two types of threats are complementary in terms 
of the areas impacted. Globally, species richness in the WG would hence be 
highly threatened by both deforestation and climate change combined in the 
near future. Results concerning potential habitat losses per species are alarming 
as well.

Figure 5 exemplifies and synthesizes the habitat maps at different years 
for the species  Nothopegia travancorica, Cinnamomum malabatrum and Aglaia 
elaeagnoidea. Suitable habitat lost due to deforestation in 2035 appears in green, 
especially in lowlands. The figure also shows in blue the remaining habitat when 
adding the influence of climate change in 2040. The areas that remain potentially 
suitable for them are in higher elevation areas of the WG. WG forests to the 
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Figure 3. Potential richness losses in 2035 under the influence of deforestation only 
(left), in 2040, under the influence of climate change only (middle), and in 2040 
under both deforestation and climate change (right). The color scale ranges from 
0% (dark blue) to 100% (bright red) potential richness loss. Protected areas are 
overlaid with dark green borders. Potential richness is calculated by summing the 
SDM probabilities of occurrence over all species.

Figure 4. Boxplot of species relative habitat losses per year under different hypotheses (left), and 
violinplot of the relative habitat loss driven by both deforestation and climate change between 
2000 and 2040 (right).

north of Palghat gap would be heavily impacted by the forecasted changes, and 
would greatly reduce the northern extent of Cinnamomum malabatrum, while 
southern hills of WG should serve as a refuge for both species. 

Under our model predictions, two species, Aglaia elaeagnoidea and 
Actinodaphne campanulata, should become extinct by 2040 in the WG due to 
climate change. They are currently listed as LC and EN/VU respectively based 
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on assessments done in 1998.Nothopegia travancorica Cinnamomum malabatrum Aglaia elaeagnoidea

Figure 5. Potential habitat maps between 2000 and 2040 for Nothopegia travancorica (left),  
Cinnamomum malabatrum (middle) and Aglaia elaeagnoidea (right). Colored points represent 
suitable areas for different years: 2000, 2010, 2019 and 2035 rasters were obtained considering only 
climate change whereas the 2040 raster results from the consideration of both 2035 deforestation 
and 2040 climate change models.

5.4 Discussion
5.4.1 Expected issues and challenges for conservation

The deforestation model highlights major threats to rainforests in 
Western Ghats over the short term (complete disappearance by 2070). The 
model is "pessimistic" insofar as it considers that conservation strategies would 
not be enough to prevent habitat shrinkage within protected areas. The effect of 
climatic change is also expected to be considerable in the next decades, under a 
scenario of increased CO2 concentration following the current trend (Schwalm 
et al. 2020). Nonetheless, its effect on population extinction should last longer 
than that of deforestation. While forest cutting entails immediate population 
extinction, climate change should entail more gradual decrease of population 
persistence and regeneration. Local topographic refugia can play an important 
role by allowing species persistence in small relict populations (Zellweger et al., 
2020). In addition, ecological and genetic variation within species can allow 
some more resistant tree populations to persist and even be selected under 
future climatic conditions (Capblancq et al., 2020). 

Since habitat diversity is very high in Western Ghats due to sharp 
environmental gradients, all the habitats are relatively small and sensitive to 
the effects of future deforestation and climate change. However, we note that 
northern WG would face more intense habitat loss, especially due to climate 
change (Figure 3). This area presents greater rainfall seasonality and should 
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be greatly sensitive to future alterations of the monsoon regime. Conversely, 
rainfall is more aseasonal in the South, where habitat loss due to climate change 
is expected to be less pronounced (e.g., Figure 5). Noticeably, the southern WG 
area served as a refugia during past drier periods (Bose et al., 2016; 2019), and 
could thereby serve as a refugia in future as well. Local endemism is high in the 
area due to this specific biogeographic context, and preserving the biodiversity 
in the area should be a priority for preserving evolutionary potential both 
within and between taxa (Bose et al., 2019). In a broader perspective, maps of 
habitat loss per species (Figure 5) and of species richness loss globally (Figure 
3) could help designing a network of protected areas that is adapted to the 
future expected threats.

Although our models predict great habitat loss in the near future (Figure 
4), we still predict that only 2 species over the 165 analyzed with the SDM 
approach should go extinct by 2040. This phenomenon supports the idea that 
mass rarity should precede mass extinction events, a pattern found in long-term 
paleontological surveys (Hull et al., 2015). In addition, our model does not 
acknowledge inertia in population and metapopulation extinction, which can 
entail long-term extinction debts (Hylander and Ehrlen 2013). Persistence of 
endemic species in small habitat remnants should not be deemed sufficient to 
ensure long-term persistence. Previous surveys in US National Parks (Harris, 
1984) and small forest remnants have shown that biodiversity continues to 
erode due to isolation and small population sizes (Brook et al., 2003), despite 
strict local conservation policy.  

5.4.2 Advantages and limitations of species distribution modelling
Species Distribution Models (SDMs) analyze environmental drivers 

of species distributions, reflecting their ecological niche requirements (Elith 
and Leathwick,  2009). SDMs are thus suited to forecast changes in species 
distributions in response to future environment, so that the projected maps 
can help to identify where, how and when to define priority conservation 
areas. However, because of the correlative nature of SDM, their use in guiding 
conservation and management strategies should acknowledge some limitations 
and thus requires specific precautions (Muscatello et al., 2020). 

First, the reliability of SDM, and in particular their predictive ability, 
critically depends on an appropriate choice of predictors (Fourcade et al., 
2018). Here, we integrated bioclimatic variables that are known to be major 
drivers of forest types in WG, namely rainfall amount, rainfall seasonality, and 
temperature variables. Even with such relevant predictors, projecting future 
potential habitat based on current environmental conditions can suffer from 
extrapolation errors (Colwell and Rangel, 2009), which undermine model 
transferability (Yates et al., 2018). 

Second, a SDM represents a broad envelope of environmental conditions 
that permit the establishment and persistence of a given species, at the best. It 
does not acknowledge dispersal and establishment limitations, especially under 
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rapid environmental changes. Even at an equilibrium of habitat occupancy, any 
given species cannot occupy all of its suitable habitat, and the ability to more or 
less occupy the suitable habitat can broadly vary across species (Grenié et al., 
2020). Recent works have suggested using additional information on species 
dispersal abilities (Monsimet et al., 2020) and/or population densities (Santini 
et al., 2019) to derive more reliable estimates of species occurrences under 
future scenarios of habitat changes. 

Third, endangered species are rare, and the limited number of 
occurrences limits the statistical power and validity of SDM. Although more 
and more efficient regularization techniques can prevent overfitting, new works 
have suggested integrating information on cooccurrence and biogeographi-
cal patterns to increase predictive ability of rare species (Deneu et al., 2021). 
Recent methodological advances addressing the major challenges mentioned 
here open new perspectives for using refined SDM models to better predict 
future species distributions (Kindsvater et al., 2018; Zhang et al., 2020; Deneu 
et al., 2021). 

To overcome the limitations of correlative SDM approaches, recent 
works have called for more process-based models, which would more explicitly 
integrate ecophysiological constraints, biotic interactions and dispersal 
dynamics (e.g., for North American trees, Case and Lawler, 2017). Dynamic 
Global Vegetation Models (DGVM) are designed to predict ecosystem 
properties depending on environmental conditions, using ecophysiological and 
biophysical rules. Although DGVM are not intended to predict distributions 
of individual species, they can provide insights into the functioning of habitats 
sheltering threatened species. In addition, DGVM acknowledge the ecological 
strategies of plant functional groups, and are now going into finer and finer 
characterization of species-specific responses. A combined use of SDM and 
DGVM should thus help define relevant strategies for habitat and species 
conservation. The impact of fragmentation on population extinction and 
colonization should also be more explicitly integrated in predictive models 
(Kale et al., 2010; Athira et al., 2017; Thomson et al., 2020).   

5.4.3 Perspectives for estimating and predicting IUCN status
A SDM provides a probability map reflecting potential habitat 

suitability for a given species. While IUCN criteria and reserve managers 
need information on the “actual” distribution of populations, SDM cannot 
predict the actual future of populations, and thus cannot directly be used to 
assess the conservation status and species occurrences in future. Thresholding 
SDM probabilities is a way to derive binary presence-absence maps (Liu et 
al., 2013), which represent potential geographical ranges and can thus inform 
potential species status regarding IUCN criteria B (geographic ranges). 
Different methods have been proposed to calculate the threshold depending 
on prediction accuracy (Liu et al., 2005). Maximizing the True Skill Statistic 
(TSS, the sum of specificity and sensitivity minus one, Allouche et al., 2006) 
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is currently a standard approach, with the advantage of being independent of 
species prevalence. An original thresholding approach has been introduced by 
Syfert et al. (2014) to specifically estimate IUCN species  Extent Of Occurrence 
(EOO) from SDMs outputs. It maximizes geographical similarity between SDM 
predictions and the empirical EOOs obtained by drawing a minimum convex 
polygon around species occurrences. Recent tools and packages have been 
proposed to assess IUCN status from EOO and AOO (Area of  Occupancy) 
assessment, e.g., the R package ConR (Dauby et al., 2018). In any case, caution 
is needed to avoid misevaluation of conservation status from potential instead 
of actual distribution changes (Walker et al., 2020).

Classic IUCN criteria involve measures of actual population changes, 
while assessing range and occurrence variation with SDMs represent a sensibly 
different approach. Because of the caveats in relating habitat suitability maps 
to existing IUCN criteria, recent works have advocated integrating new 
geographic range metrics in IUCN criteria (Brooks et al., 2019). The Area 
Of Hability (AOH, also known as ESH for Extent of Suitable Habitat) is a 
measure of species habitat range considering occurrences, habitat type and 
elevation preferences. AOH can be used as an upper-estimate for AOO when 
measured  at a 2 x 2 km²  resolution (Santini et al., 2019) and even for EOO 
when drawing a Minimum Convex Polygon (MCP) around selected areas. 
However, a unified and consistent calculation for AOH is yet to be defined as 
stated in Brooks et al. (2019). The use of disparate data sources and habitat type 
maps for instance are preventing the scientific community from comparing 
results. How AOH and SDM suitability maps can be related opens interesting 
perspectives in this regard. Both aim at estimating a spatial distribution of the 
ecological niche for a given species. Santini et al. (2019) even combined AOH 
with population density to estimate population size: such practices should be 
studied and assessed with a view to being standardized and widespread. Finally, 
when creating habitat models, one should not forget that there are other factors 
determining conservation planning such as social (Lõhmus et al., 2020) and 
economic aspects. Integrating preservation of ecosystem services and species 
conservation is a major goal in the current sustainable management agenda. 
Specifically, tree diversity and carbon storage cobenefits in tropical human‐
dominated landscape (Osuri et al., 2020).

Interdisciplinary research should help better assess threats and better 
guide conservation strategies. Computer science and especially Machine 
Learning (ML) has a great potential to offer to conservation science. Prediction 
algorithms can be used to directly link species occurrences along with some 
predictors to IUCN status, thus bypassing the use of SDMs (Zizka et al., 2020). 
Bland et al. (2015) led a comparative study of seven ML models to predict 
the status of currently Data Deficient terrestrial mammals. Open data and 
participatory science projects such as Pl@ntNet (Bonnet et al., 2020) provide 
access to a huge amount of data, which opens new perspectives for powerful use 
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of deep learning techniques. New approaches in optimization under constraints 
should help incorporate numerous and heterogeneous criteria for identifying 
optimal conservation strategies (Justeau-Allaire et al., 2021). Conservation 
science has a lot to offer to computer science as well: less tractable problems 
such as class imbalance (Wang et al., 2017), presence-only data or observation 
bias (Meyer et al., 2016; Walker et al., 2020) are feeding ML research.

5.4.4 Models complement but do not replace field surveys
While we noted the benefit of using a modelling approach to predict 

future threats and guiding decision and management strategies, under multiple 
and complex constraints, we should still also underline that the modelling 
approach is complementary and cannot replace empirical and observation data. 
In this regard, a Long-Term Ecological Research (LTER) framework is needed 
for long-term monitoring of biodiversity changes in WG (Reddy et al., 2018). 
The results should validate or conversely infirm the predictions of SDM. In 
the cases that observed trends differ from SDM predictions, this should allow 
assessing the importance of processes most often neglected in SDM, such as 
species dispersal dynamics, and adaptation to new environmental conditions. 
In addition, knowledge gaps on the diversity of organisms in the WG 
biodiversity hotspot remain, which require continuing field exploration and 
taxonomic surveys (e.g., Shigwan et al., 2020). Improving knowledge is pivotal 
in conservation science, and a tenet of the Rio Declaration on Environment 
and Development in 1992. 

Expert knowledge plays a major role in IUCN risk assessments and could 
be assisted and not replaced by automatic prediction (Bachman et al., 2011). 
Automatic pre-assessment can guide observation efforts (sampling strategy 
and field check of threats). A key research avenue would be to bridge the gap 
between manual and automatic assessment by working with new data and 
methods (Zizka et al., 2020). This synthesis shows that further IUCN assessment 
efforts are urgently needed to update the status of formerly evaluated species, 
and to provide an assessment of unevaluated species in WG.
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