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A B S T R A C T

Reducing carbon emissions from deforestation and degradation (REDD) requires detailed insight into how the
forest biomass is measured and distributed. Studies so far have estimated forest biomass stocks using rough
assumptions and unreliable data. High-resolution data and robust methods are required to capture the spatial
variability of forest biomass with sufficient precision. Here we aim to improve on previous approaches by using
radar satellite ALOS PALSAR (25-m resolution) and optical Landsat-derived tree cover (30-m resolution) ob-
servations to estimate forest biomass stocks in Madagascar, for the years 2007–2010. The radar signal and in situ
biomass were highly correlated (R2= 0.71) and the root mean square error was 30% (for biomass ranging from
0 to 500 t/ha). Using our map at 25-m resolution for the entire island of Madagascar, we estimated the total
above-ground forest carbon for the four years 2007, 2008, 2009 and 2010 to be 1.1173±0.0304,
1.1029± 0.0303, 1.0916± 0.0301 and 1.0773± 0.0298 PgC, respectively. Carbon stocks were found to have
decreased constantly over this period due to anthropogenic deforestation and likely also to climate change. The
results are expected to serve as a more accurate benchmark for monitoring progress on REDD and to provide
strong supports for current and future spaceborne missions such as ALOS-2, SAOCOM and BIOMASS.

1. Introduction

Forest biomass plays a key role in the global climate (Pan et al.,
2011). However, compared to biomass in other ecosystems, forest
biomass remains poorly quantified, owing to the practical difficulties in
measuring stocks over broad geographic scales. Overcoming this ob-
stacle is important, because quantifying forest biomass is essential for
countries planning to participate in the Reducing Emissions from De-
forestation and Degradation (REDD) program (Hufty and Haakenstad,
2011). REDD offers incentives (e.g., monetary compensation) for
countries to preserve their forestland in the interest of reducing carbon
emissions and thereby lessening the risk of climate change. Both above-
ground and below-ground biomass are present, but above-ground bio-
mass (AGB) is more commonly measured. In recent years, progress has
been made in mapping forest biomass by using a range of remote sen-
sing technologies (Saatchi et al., 2011; Baccini et al., 2012; Vieilledent
et al., 2016). Nonetheless, these studies are limited by their dependence
on optical sensors (relatively insensitive to biomass), low resolution

(from 250m (Vieilledent) to 500m (Baccini) to 1000m (Saatchi)) and
inadequate sampling intensity. For example, the results of Saatchi et al.
(2011) and Baccini et al. (2012) show strong discrepancies at the local
scale and there are no evident reasons for preferring one map over the
other.

Unlike passive optical sensors, radar systems are capable of produ-
cing high quality images of the earth even in cloud cover conditions.
Synthetic aperture radar (SAR) allows for continuous global spatial
coverage and systematic acquisitions, both of which are essential for
constructing relevant temporal series. The potential of SAR for forest
biomass estimation has been highlighted since the early 1990s (Le Toan
et al., 1992). Radar intensity depends on the overall geometrical and
dielectric features of these various scatterers, whose geometrical vo-
lume and wood density give the whole forest biomass. As a general rule,
increasing intensity values goes with increasing biomass whether at L or
P-bands, until a saturation value, which occurs earlier at L-band
(Dobson et al., 1992).

The L-band ALOS mission is considered pioneering in the systematic

https://doi.org/10.1016/j.rse.2018.04.056
Received 8 August 2016; Received in revised form 16 August 2017; Accepted 28 April 2018

* Corresponding author.
E-mail address: dinh.ho-tong-minh@irstea.fr (D. Ho Tong Minh).

Remote Sensing of Environment 213 (2018) 206–214

Available online 19 May 2018
0034-4257/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2018.04.056
https://doi.org/10.1016/j.rse.2018.04.056
mailto:dinh.ho-tong-minh@irstea.fr
https://doi.org/10.1016/j.rse.2018.04.056
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2018.04.056&domain=pdf


acquisition of data that has allowed the imaging of the planet over time
at high resolution. This strategy of systematic acquisition enabled the
production by the Japan Aerospace Exploration Agency (JAXA) of
mosaic images of up to 25-m resolution (Shimada et al., 2014). These
mosaics are radar images preprocessed by the JAXA, made freely
available in tiles of 1 degree squared for the years 2007–2010 (Shimada
and Ohtaki, 2010). The L-band ALOS PALSAR data have been widely
used to estimate the forest biomass. For example, the ALOS PALSAR
data were exploited to estimate the biomass of forests threatened by oil
palm plantations in Malaysia (Morel et al., 2011), while in Sumatra,
texture features from ALOS PALSAR data were used (Thapa et al.,
2015). However, estimation of forest biomass using ALOS PALSAR data
currently has limitations, because the L-band saturates at about 150 t/
ha. Savanna vegetation has lower carbon stocks and is thus more easily
estimated with these data. For example, Mermoz et al. (2014) produced
a country-level map of Cameroon's savanna biomass at 25-m resolution.
In most studies, the cross-polarization (HV) is preferred for estimating
biomass because it minimizes the contribution of coupling terms with

the ground. Indeed, the HV intensity mainly from the depolarizing part
(oriented branches) represents a small proportion of biomass, but it is
highly correlated with the total biomass. These studies are based on the
fact that the HV intensities are positively correlated with biomass.
However, the signal sensitivity decreases as the biomass increases, up to
a point called the saturation point, where sensitivity is lost. At L-band
HV, this saturation point is about 150 t/ha (Mermoz et al., 2015). After
the saturation point, many studies (Woodhouse, 2006; Lucas et al.,
2007; Mermoz et al., 2015) have highlighted a weak negative correla-
tion of intensity with biomass. In other words, with high biomass va-
lues, the ALOS PALSAR signals decrease. The non-monotonic relation-
ship between intensity and biomass means that corrective models must
be established when the range of biomass includes high values. One
attempt to retrieve biomass greater than 150 t/ha is the European Space
Agency (ESA) P-band BIOMASS mission, to be launched in 2020.
Taking advantage of the 300 t/ha saturation point for P-band, this
mission aims for more precise measures of global forest biomass (Le
Toan et al., 2011; Ho Tong Minh et al., 2015) and hence better

Fig. 1. The study site is the entire island of Madagascar. The background is the Landsat-derived tree cover. Red, yellow and black circles represent field sites in dry
forest, moist forest and spiny forest, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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understanding of the terrestrial carbon cycle by measuring global forest
biomass.

However, the potential for using L-band radar to estimate high
biomass values has not been completely explored. In this study, we
propose a new approach to retrieve the full range of biomass using L-
band ALOS PALSAR data based on prior knowledge from the global tree
cover map at 30-m resolution produced by Hansen et al. (2013). To do
this, we use a very large number of forest plots (572) dispersed across
Madagascar from 2007 to 2013. Madagascar has a wide variety of forest
types (dry forest, spiny forest, and tropical moist forest) known to differ
in AGB. It is thus a particularly interesting region for studying spatial
variation in the distribution of biomass (and hence of carbon) stocks
using radar data.

The paper is organized as follows: in Section 2, the study site is
introduced and the proposed methodology is shown; in Section 3, the
relationship between radar measurements and AGB is evaluated and the
inversion results are presented; in Section 4, we interpret and discuss
for each result; in Section 5, we present our conclusions.

2. Data and methods

2.1. Study area

A continental island almost 1600 km long lying off the south-eastern
coast of Africa in Indian Ocean, Madagascar stretches between 12° S
and 25° S latitude, from Cape Amber in the north to Cape St. Mary in
the south, and averages about 500 km in width. Within its area of 587
040 km2, three types of climates occur. The east coast has a humid
tropical climate. West of this coast, the climate is moderate in the north
and arid in the south. The broad climatic gradients on the island are
associated with elevation and position relative to the dominant south-
eastern trade winds (Goodman and Benstead, 2003). Over these cli-
matic gradients occur a large range of tropical forest types, from dry
spiny forests in the sub-desert southern regions, to cloud forests at the
tops of the northern and eastern mountains. The east coast, exposed to
the trade winds, receives the highest rainfall with 3500mm/year.
Forests in the northeast, are particularly wet and lush. Vegetation of
western, southern and eastern Madagascar is comprised mainly of dry
forest, spiny forest and moist forest, respectively. The moist forests are
characterized by dense evergreen vegetation with a canopy exceeding
30m. Trees of the dry forests shed their leaves in the dry season to limit
evapotranspiration, whereas plants of the spiny forests are strongly
adapted to drought. Fig. 1 shows the study area and biomass measured
in situ.

2.2. Field data

Field data are available from nine forest inventories carried out over
the period 1996–2013. Collaboration with different institutions (gov-
ernmental institutions, conservation NGOs, research institutes) allowed
us to obtain data from a large number of forest plots (1771) in the three
forest ecoregions of Madagascar (moist, dry and spiny forest ecor-
egions). However, in this work, we used only the forest inventories from
2007 to 2013 to match with the ALOS PALSAR data, in which 572 plots
were selected based on flat field slope and homogeneity within plots.
The radius of the plots was 30m in moist forest (plot size of 0.28 ha)
and 20m in dry or spiny forest (plot size of 0.13 ha). Fig. 2 shows the
number of plots and its distribution with respect to each ecoregion. We
calculated the AGB biomass (in metric tons) of each tree using the
pantropical biomass allometric equation developed by Chave et al.
(2014):

= × × ×AGB ρ DBH H0.0673 ( )2 0.976 (1)

where p is the tree wood density in g/cm3, DBH is the diameter at breast
height in cm, H is the tree height in m. Details about the computation of
AGB at the plot level are published in Vieilledent et al. (2016).

2.3. Tree cover data

Tree cover data are available globally at 30-m resolution from 2000
to 2012 in Hansen et al. (2013). The primary purpose of that study was
to quantify global forest change over the study period. This dataset was
obtained by analyzing 654 178 Landsat 7 Enhanced Thematic Mapper
Plus scenes, from a total of 1.3 million available. The final results were
obtained by training three separate classifiers: one to detect forest loss
during the study period, one to detect forest gain during the study
period, and one to detect forest cover at the start of the study period.
For pixels that were classified as forest loss, the year of loss could es-
sentially be determined by isolating the year of max normalize different
vegetation index drop. This resulted in a baseline map of tree cover for
the year 2000, forest loss and forest gain during 2001 and 2012. To
support our analysis, tree cover maps for Madagascar for 2007, 2008,
2009 and 2010 were generated from the baseline tree cover map of
2000 using the yearly loss/gain information. Detailed discussion of the
optical Landsat-derived tree cover dataset can be found in Hansen et al.
(2013). In the present study, the dataset for tree cover at 30-m re-
solution was resampled to 25-m to combine with the SAR data. Fig. 3
shows the distribution of tree cover in 2010 and biomass measured in
situ.

2.4. SAR data

520 ALOS PALSAR mosaic tiles with 25-m resolution covering all of
Madagascar from 2007 to 2010 were provided freely by the JAXA.
Mosaic data are spatially square (1° of latitude and 1° of longitude). The
radar signal can be converted into γ0 values using the following equa-
tion:

= × +γ log DN CF10 10( )0 2 (2)

where γ0 is the normalized intensity, DN is the digital number and CF is
the calibration factor, which equals −83.0 as described in Shimada
et al. (2014).

The 520 ALOS images used in this study were processed by JAXA
using the large-scale mosaicking algorithm described in Shimada and
Ohtaki (2010). This algorithm includes ortho-rectification, slope cor-
rection and radiometric calibration between neighboring strips. At this
stage, the resulting multilook images were perfectly coregistered, and
the equivalent number of looks of ALOS PALSAR data was 16. We
further improve this four years SAR dataset by exploiting a multi-image
filtering developed by Quegan et al. (2000) to reduce noise while re-
taining as much as possible the fine structures present in the images.

2.5. Proposed methodology for biomass retrieval

Based on results reported from the literature on sensitivity of the L-
band intensity in relation to biomass (see Section 1), it is possible to use
the L-band HV to estimate biomass for up to a maximum of 150 t/ha.
For higher values of biomass, L-band intensity is weakly sensitive var-
iation in biomass. In this section, we present a method to address this
problem.

First of all, we propose to weight the radar intensity by the tree
cover factor from Section 2.3 using the following formula:

= × × +γ log treecover DN CF10 10( )HVtree HV
0 2 (3)

where γHVtree
0 is the intensity weighted by tree cover and the value for

tree cover varies from 0 to 1.
Fig. 4 shows the distribution of γHV

0 , γHVtree
0 and biomass measured in

situ, for the year 2010. A significant growth was observed in intensity
with low biomass levels, followed by a loss of sensitivity and a slight
decrease in signal intensity beginning at 150 t/ha. The range of γHVtree

0 is
much higher than that of γHV

0 . In the high range of biomass values, there
is no difference between the sensitivity of γHV

0 and γHVtree
0 . In fact, as seen

in Fig. 3, we found that of plots where biomass was greater than 150 t/
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ha, 98% had tree cover of 95% or more. Based on this observation, we
proposed to use tree cover of 95% as a threshold to recognize the high
range of biomass values.

To highlight the usefulness of γHVtree
0 in our approach, we compare

the sensitivity of γHV
0 (unweighted radar intensity), γHVtree

0 (radar in-
tensity weighted by tree cover) and tree cover with in situ biomass
values in the low range (e.g., < 150 t/ha) in Fig. 5. The highest corre-
lation is observed with the weighted radar intensity data. The γHV

0 data
exhibit a much lower sensitivity to biomass (R2= 0.34) than do the
γHVtree

0 data (R2= 0.77). One possible explanation of this result is that
radar intensity integrates noise signals from the ground and this pro-
blem can be partly mitigated by incorporating tree cover data from
optical images. Finally, by comparing γHVtree

0 and tree cover in Fig. 5b
and c, the γHVtree

0 data exhibit a higher sensitivity to biomass (R2= 0.77
versus 0.72) and a smaller root mean square error (RMSE) (26% versus
30%).

For biomass lower than 150 t/ha, we fit an exponential model to
link radar signal to biomass (Mitchard et al., 2011), described as

= + × − − ×γ a b e(1 )HVtree
c AGB0 (4)

where AGB is the biomass measured in situ, a, b and c are coefficients to
be estimated from the data.

For higher values of biomass, we fitted a linear model (Mermoz
et al., 2015), described as

= + ×γ m n AGBHVtree
0 (5)

where m and n are coefficients to be estimated from the data.
By using Eqs. (4) and (5), an estimation of biomass AGB can be

calculated from γHVtree
0 . However, in our approach, a bias in the inver-

sion can be introduced. In the statistical literature, this phenomenon is

Fig. 2. Biomass measured in situ in spiny (a), dry (b) and moist (c) forest ecoregions. Number of plots sampled were 60, 84 and 428, respectively.

Fig. 3. The joint distribution between Landsat-derived tree cover and biomass
measured in situ. More than 98% of plots with AGB>150 t/ha had tree cover
of 95% or greater.

Fig. 4. (a) Biomass measured in situ versus γHV
0 . (b) Biomass measured in situ versus γHVtree

0 .
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referred to as regression dilution, in that random error in the in-
dependent variable leads to systematic underestimation of the regres-
sion slope (Fuller, 1987; Frost and Thompson, 2000). To correct for
such bias, we compensate the biomass by a ratio β, described as

 = ×Bias AGB β AGB[ ] (6)

where  = −Bias AGB E AGB AGB[ ] [ ] and E(⋅) denotes expected op-
erator, i.e., averaging over a number of observations.

2.6. Calibration for Madagascar

A common method for biomass retrieval is to exploit an inverse
model based on the empirical regression derived from the available set
of in situ and radar plot data. In this work, using 572 biomass plots for
fitting with each year's SAR data, e.g. for the year 2010, we found that

For biomass lower than 150 t/ha:

 ⎜ ⎟= − × ⎛

⎝
−

− ⎞

⎠
AGB

c
ln

γ a
b

1 1 HVtree
0

(7)

With a=−29.13± 0.09, b=18.47±0.14 and
c=0.01623± 0.00034. In the low range of biomass values, γHVtree

0 is
very highly correlated with biomass (R2= 0.77 and p<10−5).

For higher biomass values and tree cover greater than 95%:

 =
−

AGB
γ m

n
HVtree
0

(8)

With m=−12.14±0.28 and n=−9.28.10−4± 9.35.10−5. In
the high range of biomass values, γHVtree

0 is less strongly correlated with
biomass (R2= 0.18 and p=0.017).

Fig. 4b plots Eqs. (7) and (8), showing the fit between the weight the
radar intensity and the in situ biomass.

Finally, the estimated biomass can be calculated as

= + ×Biomass β AGB(1 ) (9)

With β=0.2392±0.0515.

2.7. Carbon estimation and uncertainty

The calibration described in Section 2.6 allows estimation of above-
ground biomass in Madagascan forests. To calculate carbon stock, we
convert biomass into carbon units using the 0.47 ratio (Vieilledent
et al., 2016). We apply a filter to this carbon data based on the tree
cover map and only include pixels with>25% tree cover. In others
words, we follow a conservative approach in defining forest: only land
with tree cover not less than 25% was considered as forest (Hansen
et al., 2013; Shimada et al., 2014).

The model inversion between biomass and radar is affected by the
uncertainties in radar signal, tree cover estimate and in situ biomass
data. The radar signal is impacted by a number of factors related to
forest structure and environments. The signal can also be affected by

variation in the performance of the signal emitter over time. However,
the ALOS PALSAR γHV

0 was found to be very stable at 0.065 dB over its
lifetime 2006–2010 (Shimada et al., 2014). Regarding the tree cover
dataset, there is little uncertainty, with classification error less than 1%
(Hansen et al., 2013). Regarding in situ biomass measurements, the
data collection procedures in the sources we used varied somewhat
across organizations, but all the different protocols allowed estimating
biomass in t/ha at the center of each forest plot. Application of an
uncertainty analysis at each stage is out of the scope of this study. If all
sources of uncertainties can be estimated, an explicit equation can be
applied to ALOS PALSAR data (Mermoz et al., 2014). Nonetheless, in
this work, uncertainties related to the carbon estimates are estimated by
Monte Carlo simulations. Such uncertainties affect the definition of the
inverse model (imprecision and bias), as the in situ biomass estimates
are used to fit parameters of the model. A new inverse model is derived
by estimating the coefficients(a, b, c, m, n, β) and biomass is estimated
at each generation (with 1000 realisations). For each pixel, the dis-
persion of biomass values resulting from the 1000 possible models is
used to calculate the standard deviation in the uncertainty associated
with the estimation of biomass (and hence of carbon).

3. Results

The methods proposed in Section 2.5 were applied to ALOS PALSAR
data in Madagascar. The RMSE and the correlation R2 were used to
evaluate performance of the SAR dataset for each year using all in situ
plots available. The same performance for biomass retrieval with re-
spect to in situ data was found for all four years. The results, presented
in Fig. 6a, showed a RMSE of 30% (for biomass ranging from 0 to 500 t/
ha) and R2= 0.71, for the year 2010. To avoid overfitting, we carried
out a 10-fold cross-validation procedure (McLachlan et al., 2005). For
biomass values in the range 0–150 t/ha, the average RMSE in 2010 was
26% and R2= 0.77, whereas for biomass values in the range 0–300 t/
ha in the same year, the average RMSE was 28% and R2= 0.72.

Second, 520 ALOS PALSAR 25-m resolution images were used to
retrieve biomass for 2007, 2008, 2009 and 2010. The biomass maps for
these four years were found to be similar in their biomass content. An
example of the biomass map for 2010 is shown in Fig. 7b. To appreciate
the 25-m pixel size of the biomass map, a zoom version in an 0.5°×0.5°
window was shown in the bottom. The distribution of biomass at 25-m
resolution shows details of spatial biomass density, indicating a west-
east gradient.

Third, using our map at 25-m resolution, we estimated the forest
carbon stocks for dry, spiny and moist ecoregions, respectively (see
Table 1). The total forest carbon in the four years 2007, 2008, 2009 and
2010 is 1.1173 ± 0.0304, 1.1029 ± 0.0303, 1.0916 ± 0.0301 and
1.0773 ± 0.0298 PgC (1 PgC=1015 g carbon), respectively. Over the
four years carbon stocks were found to have decreased by approxi-
mately 0.01 PgC/year. Finally, using the carbon map in 2007 and in
2010, we established the forest carbon change over the period

Fig. 5. (a) Biomass measured in situ versus γHV
0 . (b) Biomass measured in situ versus tree cover. (c) Biomass measured in situ versus γHVtree

0 . The blue line is the best fit
of the data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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2007–2010 (see Fig. 8).

4. Discussions

In this work we show that radar signal intensity combined with tree
cover data can be used to estimate biomass across the entire range of
biomass values in Madagascan forests. As seen in Fig. 5, weighting the
radar signal by tree cover data increased the correlation between the
radar signal and biomass. The weighted radar intensity follows a
logarithmic regression and biomass reaches a certain threshold at
which the signal becomes saturated and then quickly decreases. The
present analysis confirms the possibility of exploiting such behavior in
an inversion scheme to retrieve the full range of biomass up to 500 t/ha.
Relative error in performance of biomass retrieval was 30% and the
correlation between the weighted radar intensity and biomass was high
(R2= 0.71) at 25-m resolution. Finally, we showed that biomass can be
mapped efficiently even in tropical dense forests. Together, these re-
sults considerably add to our confidence in the ability of current and
future missions such as L-band ALOS-2, L-band SAOCOM and P-band
BIOMASS to provide accurate wall-to-wall biomass mapping. In parti-
cular, the arrival of the P-band sensor BIOMASS, which will exploit a
volume layer through tomographic processing (Ho Tong Minh et al.,
2014), will make it possible to estimate forest biomass with relative
error of only about 11% at 4-ha resolution (Ho Tong Minh et al., 2015,
2016).

First, we showed that the inversion method described in Section 2.5
can be applied to retrieve the full range of biomass values. Our analysis
was successfully conducted for forests of the entire island of Mada-
gascar. It is worth noting that the inversion for high range of biomass
values (e.g. greater than 150 t/ha) is mainly based on the fact that L-
band radar signal decreases with increasing height of forest vegetation,
a phenomenon that is well-known in the L-band literature (Woodhouse,
2006; Lucas et al., 2007; Mermoz et al., 2015). In addition, even at the
longer wavelength P-band (wavelength 69 cm), the relationship be-
tween the ground layer and biomass exhibits a negative trend (Ho Tong
Minh et al., 2014), similar to that observed for the L-band. The decrease
can be explained by signal extinction, which likely to be higher in the
presence of tall trees (and hence of high biomass).

To place this result in perspective, we compared our analysis with
the work of Vieilledent et al. (2016). Their map was generated by using
a correlative approach based on a bioclimatic envelope model and data
from all 1771 forest plots inventoried during the period 1996–2013
over a large climatic gradient. The reader is referred to Vieilledent et al.
(2016) for details. In fact, Vieilledent's map is represented as the most
accurate biomass map available at 250-m resolution for the year 2010
in Madagascar. The comparisons are shown in Figs. 6 and 7. For the
year 2010, from Fig. 6, the correlation R2 and relative error are quite
similar between the two maps. However, thanks to the 25-m resolution
of the ALOS PALSAR data, our map of biomass distribution is more
detailed than Vieilledent's map at 250-m resolution (see Fig. 7). For

Fig. 6. (a) The biomass inversion performance of this study. (b) Performance in the study of Vieilledent et al. (2016). Top panels are the cross-plot 1:1. Bottom panels
are the bias. The biomass retrieval appears to be reliable for biomass ranging from 0 to 300 t/ha.
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example, in the bottom panels of Fig. 7, our map shows details of sa-
vanna ecosystems close to the coast such as forest savanna, woody sa-
vanna, and gallery forests, whereas in Vieilledent's map, they cannot be
shown, owing to the limitation of the data available in the bioclimatic
envelope model (Vieilledent et al., 2016). Furthermore, it is worth
pointing out that if we only consider the low range of biomass values
(i.e., < 150 t/ha), our result is slightly better than that of Vieilledent
(R2= 0.77 versus 0.76 and RMSE=26% versus 31%). This is

important because almost 80% of forest cover of Madagascar has bio-
mass values less than 150 t/ha.

Third, we calculated that the values for total forest carbon in 2010
was 1.0773 ± 0.0298 PgC, whereas by using Vieilledent's map at 250-
m resolution, it was 0.8738 PgC. It is worth recalling the results of
others studies, for example those of Saatchi et al. (2011) and Baccini
et al. (2012). These results were predicted for the year 2010 by
Vieilledent et al. (2016) as 0.7490 PgC and 0.6392 PgC for Saatchi's and

Fig. 7. Biomass maps for Madagascan forests for the year 2010 are shown. The color scale varying from yellow to green to blue illustrates the full biomass range from
0 to 500 t/ha. The spatial distribution of biomass for the entire island of Madagascar shows a west-east gradient. (a) Map from the study of Vieilledent et al. (2016)
and (b) map from this work. The bottom panels show a zoom version of red-bordered boxes to facilitate visualization of the biomass results. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Surface area (ha) and carbon assessment (PgC) in Madagascar with respect to the dry, spiny and moist forest ecoregions.

2007 2008 2009 2010

Area (ha) Carbon (PgC) Area (ha) Carbon (PgC) Area (ha) Carbon (PgC) Area (ha) Carbon (PgC)

Dry 4,770,533 0.1635 ± 0.0078 4,725,042 0.1623 ± 0.0079 4,695,772 0.1601 ± 0.0079 4,639,216 0.1528 ± 0.0076
Spiny 355,857 0.0112 ± 0.0011 352,230 0.0111 ± 0.0011 346,299 0.0108 ± 0.0011 341,805 0.0104 ± 0.0011
Moist 13,263,951 0.9426 ± 0.0215 13,228,492 0.9295 ± 0.0213 13,193,701 0.9207 ± 0.0211 13,147,997 0.9141 ± 0.0211
Total 18,390,341 1.1173 ± 0.0304 18,305,764 1.1029 ± 0.0303 18,235,772 1.0916 ± 0.0301 18,129,018 1.0773 ± 0.0298
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Baccini's, respectively. In all cases, we found that their results were
underestimated for the total forest carbon stocks, owing to the low
resolution of the maps used, with pixel size ranging from 250m
(Vieilledent) to 500m (Baccini) to 1000m (Saatchi) and to the limita-
tion of the data in the model inversion, where missing data was treated
as zeros. In our estimation, carbon stocks tended to decrease over
2007–2010 by approximately 0.01 PgC/year, caused by anthropogenic
deforestation and probably climate change, both of which are known or
suspected to lead to decrease carbon stocks in tropical forests elsewhere
(Vieilledent et al., 2016). As shown by Fig. 8, most of the affected areas
nationally are in areas of tropical moist forests, i.e., in the east of the
island (see also Table 1). Indeed, in Madagascar, around 57 000 ha were
deforested each year in the period 2000–2010(see Vieilledent et al.,
2018). Assuming a mean carbon stock of 100 tC/ha, we obtain an an-
nual carbon loss of 0.006 PgC. The difference (0.004 PgC) could be at-
tributed to degradation (caused by direct human actions, climatic
events or both).

Finally, to highlight our results on changes in carbon stocks, Fig. 8
includes a zoom of an area (outlined in red) near Kirindy. This area of
strong carbon stock loss is associated with deforestation, caused by the
cyclone Fanele in 2009 followed by uncontrolled fires in the following
years (Lewis and Bannar-Martin, 2012). In addition, for each year in

Madagascar, the forest carbon gain is usually< 5 tC/year (Fox et al.,
2011; Poorter et al., 2016), equivalent to< 15 tC for the three-year
period 2007–2010. Interestingly, this was confirmed by the histogram
in Fig. 8, showing very few pixels with values of carbon change over
15 tC/ha.

5. Conclusions

In this study, we have developed a methodology for retrieving the
full range of forest biomass values in Madagascar. The methods are
based on 572 forest plots and 520 ALOS PALSAR mosaic tiles with 25-m
resolution acquired from 2007 to 2010 over the entire island. The
method improved the biomass inversion by combining radar intensity
and data on tree cover, which resulted in increasing the correlation
between the radar signal and biomass. The correlation between the
radar signal and biomass measured in situ was high (R2= 0.71), and
the RMSE was 30% (for biomass ranging from 0 to 500 t/ha). For the
low range of biomass values (e.g., < 150 t/ha), the correlation was
higher (R2= 0.77, RMSE=26%). The ALOS PALSAR mosaic data from
all of Madagascar were inverted into biomass values. The spatial dis-
tribution of biomass at 25-m resolution for the entire island shows a
west-east gradient. The biomass map also shows details of savanna

Fig. 8. Map of change in Madagascar forest carbon stocks in the period 2007–2010. A zoom version of the red-bordered box is provided to facilitate visualization of
the carbon loss in Kirindy. The top right panel is the histogram showing distribution of values, excluding values of zero. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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ecosystems close to the coast such as forest savanna, woody savanna,
and gallery forests. Over 2007–2010 period, carbon stocks were found
to have decreased constantly, owing to anthropogenic deforestation and
probably to climate change. We expect these results to serve as a more
accurate benchmark than the heretofore state-of-the-arts results of
Saatchi et al. (2011), Baccini et al. (2012), and Vieilledent et al. (2016).
Our results reinforce the science basis for current and future missions
such as ALOS-2, SAOCOM and BIOMASS, increasing our confidence
that they can provide accurate wall-to-wall biomass mapping, and
thereby enabling progress on REDD initiatives. Combining radar signal
with optical tree cover data appears to be a promising approach for
using by L-band SAR to map forest biomass (and hence carbon) over
broad geographical scales.
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