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Summary

Wood density is central for estimating vegetation carbon storage and a plant functional trait
of great ecological and evolutionary importance. However, the global extent of wood
density variation is unclear, especially at the intraspecific level. We assembled the most
comprehensive wood density collection to date, including 109 626 records from 16 829
plant species across woody life forms and biomes (GWDD v.2, available here: doi: 10.
5281/zenodo.16919509). Using the GWDD v.2, we explored the sources of wood density
variation within individuals, within species and across environmental gradients. Intraspecific
variation accounted for c. 15% of overall wood density variation (SD=0.068 gcm ).
Variance was 50% smaller in sapwood than heartwood, and 30% smaller in branchwood
than trunkwood. Individuals in extreme environments (dry, hot and acidic soils) had higher
wood density than conspecifics elsewhere (+0.02 gcm 3, c. 4% of the mean). Intraspecific
environmental effects strongly tracked interspecific patterns (r=0.83) but were 70-80%
smaller and varied considerably among taxa. Individual plant wood density was difficult to
predict (root mean square error >0.08 gcm3; single-measurement R?=0.59). We
recommend (1) systematic sampling of multiple individuals and tissues for local applications,
and (2) expanded taxonomic coverage combined with integrative models for robust
estimates across ecological scales.

(Hérault et al., 2010). Wood density therefore displays distinct

patterns across successional and environmental gradients (Simové

Wood density, the oven-dry mass of wood (g) over its fresh volume
(cm™?), is an important plant functional trait in ecology and global
change studies. Accurate species-level averages of wood density are
needed for unbiased estimation of aboveground carbon in
vegetation (Phillips ez al., 2019). Moreover, wood density defines
one of the main axes of global plant trait variation (Diaz
et al., 2016). Generally, high-wood density species are less
susceptible to mechanical, hydraulic or biotic stress (Chave
et al., 2009), experience low mortality at the expense of growth
(King ez al., 2006; Kraft ¢t al., 2010) and decompose more slowly
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etal.,2018; Poorter ez al.,2019) and is a key factor in the prediction
of the global carbon cycle and terrestrial ecosystem dynamics
(Sakschewski ez al., 2015).

Wood density varies widely among woody plants, from species
with incredibly low-density wood (c. 0.10 gem ™ in Jacaratia
spinosa (Aubl.) A.DC) to species, such as lignum vitae (Guaiacum
sanctum L.), whose wood is denser than water (. 1.05 g cm ) and
therefore sinks at any moisture level. However, wood density also
varies within and among individuals of the same species (Anderegg
et al., 2021; Fajardo et al., 2022; Yang et al., 2023). Intraspecific
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variation in traits provides an imprint of how organisms react to
changes in their environment through adaptation and morpholo-
gical plasticity (Bolnick ez a4f, 2011; Moran et al, 2016;
Girard-Tercieux ez al, 2023) and can play an important role in
ecosystem functioning (Des Roches ez a/., 2018). Better knowledge
of shifts with ontogeny and along environmental gradients would
improve vegetation models (Berzaghi ez 4/, 2020), predict how
species ranges shift in response to climatic change and disturbance
(Anderegg & HilleRisLambers, 2016), and create more robust
wood density maps for assessment of functional diversity and
vegetation carbon stocks (Boonman ez al., 2020; Sebe ez al., 2022).

Radial changes within tree trunks and branches are a common
source of intraspecific variation in wood density, usually
interpreted as a reflection of hydraulic and mechanical changes
during ontogeny (Wiemann & Williamson, 1988; Woodcock &
Shier, 2002). In plant species with low wood density near the pith,
wood density often increases towards the outer trunk layers, while
the opposite may occur in plants with high near-pith wood density
(Woodcock & Shier, 2002; Hietz et al., 2013; Plourde et al., 2015;
Longuetaud ez al., 2017; Gonzilez-Melo ez al., 2022), although
there are many exceptions to this pattern (Osazuwa-Peters
et al., 2014; Bastin et al, 2015). A link between radial variation
in wood density and plant ecological strategies has also been
suggested: pioneer plants have low density wood and grow fast early
on, but invest in denser tissues as individuals mature. By contrast,
shade-tolerants build dense tissues initially, but may invest more in
diameter growth than tissue density when reaching the canopy
(Woodcock & Shier, 2002; Bastin et al., 2015). However, we do
not know how consistent and important these patterns are at global
scales. Radial changes in wood density do not always map onto
ecological strategies (Hietz ez al, 2013), may be influenced by
deposition of chemical compounds in heartwood (e.g. nonstruc-
tural, secondary metabolites known as ‘extractives’, Lehnebach
etal., 2019) and vary among conspecific individuals or even within
individuals (Osazuwa-Peters et al., 2014).

Wood density also varies along the hydraulic pathway and
across plant organs within an individual, another source of
intraspecific variation (Schuldt ez 4/, 2013; Longuetaud
et al., 2017; Momo et al., 2020). In trees, for example, wood
density has been hypothesized to increase from trunks to
branches, because high density should provide more benefits to
mechanical stability in horizontal branch than vertical trunk wood
(Anten & Schieving, 2010; van Casteren ez al., 2012). However,
while branch and trunk wood densities are generally tightly
correlated with one another, there is little agreement on whether
branches are more (Fegel, 1941; Dibdiakova & Vadla, 2012;
Fajardo, 2018; Billard er al, 2020) or less dense than trunks
(Swenson & Enquist, 2008; Sarmiento er al, 2011; He &
Deane, 2016), and there is also variation within trunks and
branches (Schuldt er al, 2013; Terrasse et al, 2021). A
confounding factor may be that wood density varies less in
branches than in trunks: data from temperate ecosystems show
that wood density increases from trunk to branches in species with
low-density trunk wood and shows the opposite pattern in species
with high-density trunk wood (MacFarlane, 2020). It is unclear
whether this pattern generalizes across biomes and also whether it

© 2026 The Author(s).
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reflects different functional requirements of branches and trunks.
However, it has been hypothesized that trunk-branch gradients
simply reflect radial ontogenetic patterns between juvenile and
mature wood, since more distal organs are younger and contain
higher fractions of sapwood (Gartner, 1995).

Wood density also varies across individuals of the same species
due to differences in genetics and environments (Zobel & van
Buijtenen, 1989). As environmental conditions become more
extreme (drier, less fertile, more shaded and more windy), species
are expected to grow more slowly and invest more resources in
dense and stress-resistant tissues (Chave ez 2/, 2009). Similar effects
are expected within species (Anderegg ez al., 2021). For example,
individuals that build tissues with narrow conduits and thick fibre
and conduit walls should be more resistant to embolism (Hacke
et al., 2001; Olson ez al., 2020). By contrast, in warm, fertile and
frequently disturbed environments with high plant turnover,
fast-growing individuals with low wood density are expected to be
more competitive and successful (Muller-Landau, 2004; Yang
et al., 2023). However, genetic control over wood density is high,
suggesting that the variation among individuals of the same species
islimited (Zobel & Jett, 1995). Wood density variation may also be
limited by covariation with other traits and trade-offs between
different wood functions (Ziemifiska e al, 2013; Anderegg &
HilleRisLambers, 2016). For example, low-density wood can
sometimes be beneficial even in harsh conditions, as low-density
species tend to have greater water storage and capacitance
(Ziemifska ez al., 2020), a potential advantage in dry environ-
ments.

Overall, theory, empirical observations and common sense
predict that wood density varies predictably within species.
However, while many studies find that intraspecific variation is
predictable (Anderegg & HilleRisLambers, 2016; Anderegg
et al., 2021; Farias er al., 2023), just as many do not (Richardson
et al, 2013; Fajardo, 2018; Rosas et al, 2019; Umafia &
Swenson, 2019). Intraspecific variation is generally smaller than
interspecific variation (Osazuwa-Peters ¢t al., 2014), so it is easily
confounded with measurement errors and methodological differ-
ences in how wood density is determined (Barbosa & Fearn-
side, 2004; Williamson & Wiemann, 2010; Jati et al, 2014;
Vieilledent e al., 2018). To date, the largest global wood density
collections, including the GWDD v.1 (Zanne ez al., 2009), do not
systematically record the tissue types and plant organs where
measurements were taken. As a result, there is a fundamental lack of
knowledge about the extent of intraspecific variation in wood
density and its determinants within and among individuals, with
substantial implications for ecological models and carbon estimates
in woody ecosystems (Nogueira ez al., 2007; Momo ez al., 2020). In
particular, we lack practical guidelines as to when to exhaustively
measure it vs when it can be safely ignored.

Here, we introduce a substantially updated and improved
version of the Global Wood Density Database (GWDD v.2),
which more than doubles the taxonomic coverage of the
original database (from 7555 to 16 829 taxonomically resolved
species), increases the number of records from 16468 to
109 626, and, as available, includes a detailed description of
where and how measurements were taken within and across
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individuals. Using these data, we addressed the following
questions: (1) How large is intraspecific variation in wood
density? (2) How much of this intraspecific variation can be
explained by differences in wood density among plant organs?
(3) How much of intraspecific variation can be explained by
environmental factors, such as temperature, water deficit, wind
speeds and soil fertility? Based on our results, we also (4) make
a number of recommendations to effectively incorporate
variation among and within individual plants into models to
improve predictions of wood density.

Il. Materials and Methods

1. Assembling the Global Wood Density Database v.2

The GWDD v.2 is a substantial update of the GWDD v.1, an
open-access database that consisted of a list of 16 468 tissue density
values from ¢ 7500 species. It was assembled from > 200 sources
and included a taxonomic identifier, a region where the
measurement was taken, and a literature reference (Chave
et al., 2009; Zanne et al., 2009). Since its publication, many new
wood density values and large trait databases have been published,
and improved methodologies have been developed to improve
consistency across studies (Williamson & Wiemann, 2010;
Vieilledent ez al., 2018; Langbour ez al., 2019; Farias ez al., 2020
Radtke er al, 2023; Cuny et al, 2025). We used this as an
opportunity to expand the database and create a new, improved
version.

First, we critically re-examined the original database and
updated 42% of entries (7=6968, details in Supporting
Information Methods S1). Second, we included additional wood
density measurements from published and unpublished sources
(Methods S1 and S2). We put particular emphasis on previously
undersampled biomes, such as dry forests, savannas and the
species-rich tropics. We also included individual measurements
instead of aggregated values and created comprehensive documen-
tation. The new database contains 45 attributes that report the
original values, sampling techniques and data transformation
methods (Table S1). The database is available online on Zenodo
(doi: 10.5281/zenodo.16919509).

Wood density definition and conversion factors In the GWDD
v.2 and throughout this study, wood density is defined as ‘basic’
wood density, the mass of an oven dried wood sample divided by its
fresh (or water-saturated) volume (g cm ). Wood density thus
measures the dry mass contained in the wood volume of live plants
and is an indicator of a plant’s investment in woody tissues. When
normalized by the density of water (1 gcm ™), it is also referred to
as ‘wood specific gravity’ (gg~ L, Williamson & Wiemann, 2010),
but throughout our analyses, we use the term ‘wood density’. When
assembling the GWDD v.2 and in all following analyses, we also
included the tissue densities of tree-like monocots without
secondary growth, as this was consistent with common inventory
protocols (Condit, 1998; The SEOSAW Partnership, 2021) and
global tree databases (e.g. Beech ez 2/, 2017). In total, monocots
contributed 186 records from 91 species most of which were either
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Arecaceae (65) or Asparagaceac (18). Since these monocots
amounted to < 0.2% of the total records, their inclusion had a
negligible effect on results.

Different wood density definitions are available in the literature.
Green density, the fresh mass of wood divided by fresh volume,
reflects actual plant growing conditions (Niklas & Spatz, 2010). In
the timber industry, a relevant quantity is air-dry wood density, the
mass of wood divided by its volume, with both measured atambient
air moisture (¢. 10-15%), reflecting properties of wood in the
conditions in which it is used (Détienne & Chanson, 1996;
FPL, 1999). Oven-dry density, that is dry mass over dry volume,
has also been reported in the literature (Deklerck ez 4/., 2019), and
dendrochronological studies often derive correlates of wood
density variation within and between tree rings with X-ray
techniques (Jacquin ez 4/, 2017). Fortunately, air- and oven-dry
densities can each be converted into basic density through physical
conversion factors (Sallenave, 1971; Brown, 1997; Ilic ezal., 2000),
and recent research has shown that this can be done with as little
error as 0.015gcm > (e 2.5% of typical mean wood density,
Vieilledent ez al, 2018). These factors were also applied in the
construction of the GWDD v.2 to maximize the taxonomic and
geographic coverage of wood density (Methods S3). Converted
values and the source quantity were recorded in the columns
value_reference and quantity_reference, the conversion factor in
wsg_conversion, and the derived basic wood density value as wsg

(‘wood specific gravity’).

Aggregation levels The GWDD v.2 provides extensive informa-
tion on where and how records were obtained, which was not
available in the GWDD v.1. These new variables include site, an
informal description of the measurementsite, longitudeand latitude
in the decimal system, and country. The attribution to a region has
been revised since GWDD v.1 to better reflect geographical
variation (Table S1). The database also contains information on
sample type (gype_samplefor ‘core’ or ‘disc’), measurement location
within plants (location_sample for ‘trunk’, ‘branch’ or ‘root’, for
example, and gype_tissue for ‘heartwood’, ‘sapwood’ or ‘bark’),
whether a particular wood density value is the mean value of
muldiple individual plants (plant_agg), and how many individuals
were aggregated (plants_sampled). If several measurements were
available for the same individual, they were recorded with the same
id_plant. Direct estimates of variation around mean values were not
included in the GWDD v.2, as they were not consistently reported
in the literature. Where detailed measurement information was not
available, attributes were left empty (‘NA’). These samples were
excluded from analyses of intraspecific wood density variation in
this study.

Taxonomic name resolution Taxonomic names were newly
standardized via the WORLDFLORA R package (Kindt, 2020) and
the June 2023 version of the World Flora Online (WFQ) database
(The World Flora Online Consortium ez 4., 2023). Taxon names
were converted in the field species_reference_canonical, including
infraspecific assignations (e.g. variety, subspecies, hybridization)
and resolved via the default fuzzy matching in the WORLDFLORA
package. Taxonomic authorities were not included as inputs for the
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matching, as they were inconsistently reported in the source data.
For unmatched taxa and anything beyond a missing, added or
switched letter, the matching was repeated without infraspecific
assignations. In the case of multiple matches, we chose the default
value provided by WFO (called ‘smallest id’). Any remaining taxa
were manually corrected. We also extracted information on plant
families from the WFO database and reported itin the GWDD v.2.
Overall, only 34 entries (22 genera) could not be matched to any
family.

Taxonomies are constantly updated to resolve ambiguities in
species definitions, and sometimes, taxonomic resolution leads to a
reclassification of species as subspecies and varieties (or vice versa).
For simplicity, we recorded the entire scientific name provided by
WORLDFLORA in the GWDD v.2’s species column, including
infraspecific epithets. We also used this species definition for
analyses in our study to provide the most conservative estimates of
intraspecific variation. However, preliminary tests revealed that
only a negligible portion of the analysed species had infraspecific
epithets (c. 1% of all species with individual level wood density
records, < 1% among high-quality records), so this choice had no
discernable effect on results.

2. Intraspecific wood density variation

Coverage of taxonomic and geographic variation Overall, we
assembled > 100 000 records from ¢. 17 000 plant species in the
GWDD v.2. We assessed the representativeness of the species
included in the GWDD v.2 with regard to the number of woody
taxa world-wide estimated by assuming that 45% of the flowering
plants are woody (FitzJohn ez al., 2014), and the total number of
flowering plants is ¢. 400 000 (Enquist ez 4/, 2019). We also used
a verified list of known tree species (GLOBALTREESEARCH 1.7;
Beech ez al., 2017), resolved via WFO for consistency, to assess
which percentage of tree species in each country had a
corresponding wood density estimate in the GWDD v.2.
Intraspecific coverage was assessed through the number of records
per species.

Statistical analysis of intraspecific wood density variation To
assess the extent and drivers of intraspecific wood density variation,
we examined measurements from multiple sites per species,
multiple individuals per site and multiple measurement locations
per individual. For some species, the database contains multiple
samples of individuals, but only from a single site, while for others,
the database contains samples from multiple sites, but each with a
single individual. To address this issue, we created subsets of the
GWDD v.2 for each question and alternative modelling strategies
to ensure robustness of results (see Table S3 for an overview of
models and subset sizes). Throughout, ‘intraspecific variation’
refers to cases where biological variation can be confidently
separated from measurement errors. For example, tissue type
(heartwood/sapwood) and environmental factors should affect
biological variation, not measurement error. By contrast, when
variation cannot be attributed to a specific factor, intraspecific
variation plus measurement error are referred to as the ‘(residual)
wood density distribution’.

© 2026 The Author(s).
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Across all datasets, we removed records not identified to species
level (‘genus’ in the rank_taxonomic column of the database),
samples consisting of bark (‘bark’ in the #ype_tissue column of the
database) and records from experiments (identified by the words
‘fertilizer’ or ‘treatment’ in experiment_design) or from plantations
(recorded as ‘plantation’ in type_forest). We also excluded root
samples (‘root’ in the location_sample column) due to small sample
sizes.

Unless otherwise stated, all datasets were analysed using mixed
effects models with varying random slopes and intercept terms and
qualitative explicative variables (e.g. ‘sapwood’ vs ‘heartwood’)
coded as numerical variables (0, 1). Models were fitted in the R
environment (R Core Team, 2023), both with a Bayesian approach
— using the BRMS package (Biirkner, 2018) and STAN (Carpenter
etal.,2017) —and the maximum likelihood framework of the LME4
package (Bates e¢r al., 2015, ‘bobyqa’ optimizer). The Bayesian
approach was the default, due to flexible model construction,
regularization through priors and full propagation of uncertainty.
Models were assessed for convergence using standard diagnostics
(R-hat <1.02) and posterior predictive checks (further details in
Methods S4; Table S3; Fig. S1). Throughout, we also report LME4
estimates, as they are less expensive computationally and thus more
readily used in practice, especially when relying on large databases.
Model fits were assessed by comparing measured and fitted values
via root mean square error (RMSE, gcm ™) and R*. A complete list
of R packages used in the analysis can be found in the Methods S5.

Quantification of intraspecific variation in wood density To
assess the overall extent of intraspecific variation in wood density,
we first partitioned total wood density variance and its components.
We fitted a model with random effects for species nested within
genera, genera nested within families and a crossed random effect
for methodological bias (the bibliographic reference or ‘source’,
Model M1, Table S3). We computed variance as the sum of
variances across levels plus residual variance. To assess robustness,
we also fitted a separate model without the ‘source’ effect (Table S3,
M2) and restricted the analysis to species with greater than or equal
to three individuals per species, greater than or equal to three species
per genus and greater than or equal to three genera per family
(n=49 991, nypecies = 2735; Models M3-M4).

Second, to assess the contribution of different sources of
intraspecific variation to its overall extent, we partitioned the
intraspecific variance of wood density. We did so by fitting models
with random effects for individuals nested within sites, and sites
nested within species, each time with and without a crossed effect
for measurement source (formulas in Table S3, M5-M8). We
restricted the analysis to subsets of species present in at least £sites,
one site with at least £individuals and one individual with at least k
measurements (first setting /=2 and then repeating for k= 3).
Sites were defined as the collection of data within the same 1 km?
grid pixel. This approach mirrored the resolution of the climate
input data and accounted for geolocation uncertainty (e.g.
rounding of longitude and latitude values to 2 decimals). Data
subsets comprised 7=19 246 (%ndividua = 14 373, n4,. = 1270,
Mypecies = 147) records for k=2, and 7 = 2494 (m,dividuas = 1052,
Mgie = 233, Mypecies = 35) for k= 3.
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The shape of intraspecific wood density distributions was
assessed through the direct modelling of the residual variance
parameter 6 (Table S3, Model M1, cf. Methods S4) and by
comparing how well normal and lognormal distributions fitted
each species’ wood density distribution (Shapiro—Wilk test for
untransformed vs log-transformed wood densities with P < 0.05).
To account for methodological differences and report biological
variation, we always subtracted the random ‘source’ effect before
reporting wood density variation.

Estimating variation in wood density within individuals Varia-
tion in wood density within individuals was assessed by subsetting
to species with measurements for both sapwood and heartwood
(7= 679, Nypecies = 150), or for both trunkwood and branchwood
(n=48494, nypecies =2018). The fitted models (Table S3,
M9-M10) had fixed effects for either sapwood (0 for heartwood,
1 for sapwood) or branchwood (also 0/1), random intercepts and
slopes at the species level, and a crossed random effect for
measurement source. To assess whether wood density followed
predictable gradients from the pith outwards to the bark and from
the trunk upward to the branches, we calculated species means for
each woody component and checked whether the slopes of major
axis regressions (Imodel2 package; Legendre, 2024) of sapwood vs
heartwood and branchwood vs trunkwood densities were < 1
(indicating a decrease) or > 1 (indicating an increase, Table S3,
M11-M12).

To assess robustness and potential confounding effects, such as
higher sapwood fraction in branches or variation in sample sizes
among taxa, we repeated the analysis with a subset of branchwood and
trunkwood densities taken entirely from sapwood (z=1193,
Mpecies = 523, M13), with a higher-quality dataset (species with > 5
measurements both for branches and trunks, selecting five random
measurements from each, #peces = 189, M14), and a subset of
records where both branch and trunk samples were taken from the
same individuals (7= 3527, #pecies = 145, M15, fitted at individual
plant level, taking a random sample from both trunk and branch).

Environmental predictors of intraspecific wood density varia-
tion To examine wood density variation across environmental
gradients, we used species sampled from at least two sites and paired
them with the following bioclimatic layers that represent multiple
axes of plant environmental gradients, including extremes: annual
mean temperature (°C), site water balance (kg m~ 2 yr_l, but with
the sign reversed to indicate water deficit), and mean wind speed
(ms ) ate 1 km resolution (30 arcseconds). We not only used the
data from the CHELSA/BIOCLIM+ climatology 1981-2010
(Karger eral.,2017; Brun ez al., 2022) but also repeated the analysis
with coarser products from the TerraClimate climatology
1981-2010 (1/24° or ¢ 5 km at the equator), relying on climatic
water deficit (mm) instead of site water balance (Abatzoglou
et al., 2018). While site water balance is a general measure of the
availability of water to plants (Brun ez al., 2022), climatic water
deficit directly measures drought stress as the difference between
potential and actual evapotranspiration. We also included the
following soil layers: sand fraction (g kgfl), pH (unitless) and
cation exchange capacity (in mmol(c) kgfl), based on the soilgrids
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product (Hengl ez al., 2017). By default, we report only effects that
remained qualitatively consistent across analysis methods (no shift
in sign). For simplicity, effect sizes are always taken from the full
dataset using CHELSA/BIOCLIM+ predictors.

We matched predictors to wood density observations and
assessed environmental effects both among and within species
with the following model (cf. Table S3, M16-M19): wd
=Py + ZpoiBr-envyy + X v Aenvy; + Yoj T ZZ:N’/ej )
Aenvy; + €5, with e; ~ N(0, 6?). Here, n is the number of
individuals, wd ij is the wood density of individual 7 belonging to
species j, envy; is the environmental variable /£ averaged across all
individuals from species 7, and Aenvy; is the same environmental
predictor 4, but group-centred around the species mean value, and
e is the error. The model thus partitions environmental effects into
interspecific effects, where envy; is the typical environment of
species j, and intraspecific effects, where Aenvy; represents how
much the individual 7 deviates from the species mean environment.
The model is equivalent to a standard linear-mixed effects model
with random slopes and intercepts for species, but with added
group-level predictors envy; that control for predictable variation
among species (Table S3, models M16-M17, Bafumi & Gel-
man, 2007). f, is the overall intercept, , and y, are fixed-effect
parameters, and y,; and y,; are random intercept and slope
parameters for species j, respectively. We chose this model as it
allows for partitioning of intra- and interspecific effects and is more
robust when predictors vary systematically with grouping factors
(Bafumi & Gelman, 2007).

Since some species may cover only a narrow environmental
range, we repeated the analysis with a subset of species for which at
least one environmental factor covered a large range (Table S3,
n=30 128, npecics = 692, M18-M19), defined via TerraClimate
and soilgrids as the 90™ percentiles of all species’ ranges
(Aemperature = 8°Cy Awater Deficic = 450 mm, Aging speed = 1.8 m

S 1> ASand content = 300 g kgil, ApH > 1.5 or ACat. exch. cap. >
165 mmol(c) kgfl). To assess the consistency of predictors across
biomes, we fitted separate models for tropical species (>3
measurements in the tropics, 7=8783, Mspecies = 700,
M20-M21) and extratropical species (> 3 measurements outside
the tropics, 7= 26437, nypecies = 247, M22-M23).

In all models, intra- and interspecific effects were examined on
the same standardized scale. However, as environmental gradients
among species were larger than among individuals of the same
species, we also tested the rescaling of effect sizes to realized
environmental ranges for the tropical and extratropical subsets, that
is standardizing afferseparation of intra- and interspecific effects by
their respective SD. We fitted additional models to gymnosperms
only (Table S3, 7= 12 089, 7yccics = 59, M24—M25) to assess the
stability of global effects when sampling is reduced to a small
number of anatomically diverging taxa.

The effect of intraspecific variation on wood density predic-
tions Since wood density measurements are destructive, samples
are usually only taken from a subset of plants, from nearby
conspecifics or from global databases. The samples are then used to
predict the wood density of the remaining individuals, for example,
by using species mean values, or, if those are not available, the

© 2026 The Author(s).
New Phytologist © 2026 New Phytologist Foundation.

25UB0| SUOWILLIOD BA1IEB10 3[edt e aU) Aq pouBAOB e D11 WO 8N 10 S3|N1 10} AIRIGIT8UIIUO A3 1A UO (SUO 1 IPUCY-PUE-SLLLBILLIO" B 1M ARGl [puI|U0//:SdIy) SUONIPUOD PUE LB | 81395 [9202/T0/2T] UO ARIqIT8UIIUO AB|IM 90U BLRIUPOD A 0980, UdU/TTTT OT/I0pALC AW ATRIqIRUIIUO YdU//SANY W1} PaPeojumMO ‘0 *ZET8E9VT



New
Phytologist

average of wood densities from the same genus or plot (Flores &
Coomes, 2011; Réjou-Méchain et al., 2017). If many traits have
been measured, more complex imputation methods are available
(Schrodt ez al., 2015). However, most methods risk confounding
intraspecific and interspecific variation and it is unclear what to do
in edge cases, for example if one to two measurements from the
same species are available, is it better to estimate an individual’s
wood density by (1) directly using these values and averaging them,
(2) attributing the genus mean value or (3) combining both types of
information, for example through taxonomic or phylogenetic
hierarchical modelling? It is also (4) unclear whether local
measurements should be weighted more strongly to account for
environmental gradients in wood density.

To answer these questions, we first assessed the influence of
intraspecific variation on species-level wood density estimates.
We computed average wood densities for all species with >5
measurements (#pecies = 1667) and assessed how accurately these
reference values could be predicted if species were not well
sampled. To do so, we cycled through all 1667 species, in turn
removed either all species-specific measurements or all species-
specific measurements except one or two randomly chosen ones,
and then estimated the species’ mean wood density from the
remaining data. The estimation was carried out with three
models: (1) the default approach of estimating wood density
means from a genus average (when no species-specific measure-
ments exist) or a species average (when one or two species-
specific measurements exist), (2) a hierarchical model of wood
density that included a nested taxonomic structure (family/ gen-
usl species) and nested random effects for sites within studies, and
(3) the same model as in (2), but with an optional fixed effect for
trunkwood vs branchwood (Table S3, models M26-M27).
Model performance was estimated via RMSE (g cm?) and B
(Table S16).

Second, we tested how accurately we could predict the wood
density of an individual plant depending on how well the species
was sampled locally. To do so, we selected species with
measurements from at least three sites, and where at least four
of its individuals were measured at each of the three sites
(Mspecies = 318). For each of the individuals, we then reduced the
set of locally measured conspecifics to 0, 1, 2 or 3 (selecting
random individuals where possible) and for each case tested how
well the individual’s wood density could be inferred from the
remaining data. We tested five models: (1) a species average
across the entire dataset, (2) a species average, but using only
values measured as part of the same study, (3) a species average,
but using only values measured locally, and (4, 5) the same
hierarchical models as described above (Table S3, M26-M27).
Model performance was estimated via RMSE (g cm ™) and B
(Table S17).

Il. Results

1. The Global Wood Density Database

To create the GWDD v.2, we assembled 109 626 wood density
records from 166 countries, 617 primary sources and 17 262 taxa

© 2026 The Author(s).
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across all woody biomes and biogeographic realms. Of these taxa,
we resolved 16 829 to species level. We also included information
on aggregation levels, conversion factors and precise geographic
location, as well as an additional 15 093 bark density records from
57 studies. The fully assembled GWDD v.2 contained 6.7X as
many wood density records and 2.3X as many species as the
GWDD v.1 (16468 records across 7453 accepted species). We
estimated that the GWDD v.2 covered 10% of all woody species,
24% of all known tree species and 49% of gymnosperm species. Of
the families with the most known tree species, Sapotaceae and
Fabaceae were best represented in the database (38% and 34%
coverage). By contrast, wood density estimates were rare in
Arecaceae (6%, not true wood), Araliaceae (10%) and Melasto-
mataceae (12%).

Out of all the GWDD v.2's records, 83502 (76%) were
provided at individual plant level, and 58 675 entries (54%) were
precisely geolocated. For 4508 species, at least five wood density
measurements were available, and combinations of branch-trunk
wood measurements were available for 2018 species (146 families).
For 78 species, mostly in Pinaceae and Fagaceae, there were > 100
wood density measurements. The majority (65%) of the wood
density values were directly measured as basic wood density (71
746). The remaining values were converted from air-dry (c. 29%)
and oven-dry wood densities (c. 6%). Geographic coverage varied
widely, from a near-complete coverage of recorded tree species in
high latitudes to < 50% in tropical regions (95% range: 27.3%;
98.5%, Fig. 1a). We found the strongest improvements in coverage
in East Asian and West African countries, from 30 to 40% in the
GWDD v.1 to ¢. 80% in the GWDD v.2 (Fig. 1b). The strongest
increases in absolute species numbers (Fig. 1c) were recorded in
tropical countries in South America and Africa. For example, we
included wood density records for 1563 new species in Brazil,
nearly doubling the GWDD v.1 s species coverage (1637), and
786 new species in Madagascar, adding > 5X the amount of species
recorded previously (150).

2. The extent and shape of intraspecific variation in wood
density

Globally, wood density displayed a normal distribution with a
mean of 0.56 g cm ™2 (SD=0.178 gcm73). The majority of this
variation (77%, SD=0.156¢g cm ) was accounted for by
variation at the taxonomic family (30%), genus (30%) or species
levels (17%), with the rest attributed to study methodology (8%) or
intraspecificand unknown variation (15%;0.068 g cm >, Tables 1,
S4; Figs S2-S3). The intraspecific contribution was robust to
model details (Tables 1, S4-S5). For well-sampled taxa, we
partitioned intraspecific variance and found that wood density
variation among sites exceeded variation among individuals within
sites (SD = 0.025-0.042 g cm ™2 vs SD = 0.017-0.028 g cm >,
Table S6), but was small overall (¢. 20-30% of total intraspecific
variation) and smaller than residual variation (variation within
individuals + unknown measurement error, SD = 0.040-0.045 -
gcm ™2, Tables S5-S6).

Intraspecific variation differed in extent and shape between
species, with a few species varying much more than the
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Fig. 1 Tree species coverage in the Global Wood Density Database (GWDD) v.2. Panel (a) maps the percentage of each country’'s known tree species
matched to the GWDD v.2 (background colour gradient), with explicitly geolocated wood density measurements overlaid (black dots). Not all
measurements are geolocated, so countries can have high species coverage despite a lack of country-specific measurements (e.g. West African countries).
Conversely, countries can have many geolocated records in temperate systems, but low species coverage due to poor coverage in subtropical or tropical
zones (e.g. the United States). Country borders follow Natural Earth (https://www.naturalearthdata.com/, last accessed 30 Oct 2025). Panel (b) shows
the top 10 countries with the largest improvement in species coverage (%) between GWDD v.1 and GWDD v.2. Panel (c) shows the top 10 countries with
the largest improvement in sampled species, in descending order of GWDD v.2 coverage.

others (e.g. SD = 0.094 gcm > for Quercus ilex L., compared
with SD:0.038gcm73 for Quercus alba L.; Figs S3, S4).
The distribution of wood density values of conspecifics
was generally heavy-tailed, but there was no clear signal of
skew, with the lognormal distribution more often rejected
than the normal distribution (13.7% vs 12.6%,
Shapiro-Wilkes P< 0.05 for log-transformed and untrans-
formed values).

New Phytologist (2026)
www.newphytologist.com

3. Wood density variation within individuals

Across plant tissue types, there were strong correlations between
heartwood and sapwood densities (Pearson’s »= 0.78; Fig. 2a) and
between trunkwood and branchwood densities (»= 0.67; Fig. 2b;
Table S9). However, slopes were < 1 in both cases. There was a
50% reduction in the variance of sapwood compared with
heartwood (0.144 vs 0.197gcm73) and a c. 30% reduction in
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Table 1 Partitioning of wood density variance.

M1: Full dataset (incl. source

M2: Full dataset (no source

M3: High-quality subset M4: High-quality subset (no

effect) effect) (incl. source effect) source effect)
Wood density (g cm™3) Estimate Cl Estimate Cl Estimate Cl Estimate Cl
(Intercept) 0.557 [0.540-0.575] 0.554 [0.538-0.569] 0.579 [0.554-0.605] 0.575 [0.552-0.599]
Random effects Estimate (% Var) Estimate (% Var) Estimate (% Var) Estimate (% Var)
Family 0.098 (30%) 0.098 (32%) 0.067 (17%) 0.065 17%)
Family : genus 0.097 (30%) 0.098 (32%) 0.092 (33%) 0.094 (36%)
Family : genus : species 0.074 (17%) 0.077 (20%) 0.077 (23%) 0.079 (26%)
Source 0.049 (8%) 0.049 9%)
Residual (o) 0.068 (15%) 0.071 (17%) 0.068 (18%) 0.071 21%)

Estimates of variance partitioning from four models. All models partition wood density variance by hierarchically nesting taxonomic family, genus and species
levels, but differ in whether they also account for systematic measurement errors (approximated by a random ‘source’ effect, models M1/M3 vs M2/M4) and
whether they use the full dataset (M1and M2, n = 41 879, npecies = 2160) or a higher-quality subset (M3 and M4, n = 30 128, Ngpecies = 692). Point estimates
of the wood density intercept are posterior means (‘Estimate’, g cm~3), intervals 95% credibility intervals (‘CI'). Variance estimates are provided as random
effect SD in units of wood density (‘Estimate’, g cm~3)and proportion of total variance (' % Var', in brackets). Residual variation includes random measurement
errors and thus provides an upper bound on intraspecific variation (15-21%). Further model details can be found in Supporting Information Table S3, and an

extended version in Table S4.

the variance of branchwood compared with trunkwood
(0.120 gcm > vs 0.145 g cm ). When comparing only sapwood
samples from trunks and branches, this effect was weaker (0.112 vs
0.124gcm_3 , less than a 20% reduction in variance) and the
correlation was stronger (r=0.76, n=523; Fig. 2¢; for more
analyses see Table S9; Figs S5, S6). There was a weak average
decrease in wood density from heartwood to sapwood of
—0.001 gcm73 and a stronger, but still small decrease of
—0.023gcm_3 from trunkwood to branchwood (Table S8).
However, both effects varied strongly among species (slope
SD =0.060gcm > for heartwood vs sapwood and SD =
0.075gcem > for trunkwood vs branchwood). Wood density
increased from trunk to branch in low-density species, such as
gymnosperms or temperate angiosperms (+0.09 g cm 2 or . 22%
in Abies alba Mill.), while wood density decreased from trunk to
branch in high-density species, typically found in the tropics
(—0.13¢ cm > or —16% in Eschweilera coriacea (DC.) S.A.Mori),
but many exceptions existed and patterns were noisy (Fig. 2d).

4. Wood density variation among individuals

Environmental models predicted wood density measurements
well (R =0.71-0.73, RMSE = 0.062-0.069 gcm >, models
M16-M19) and better than a purely taxonomic model
(R =0.63-0.64, RMSE =0.072-0.079 gcm >, M26), with
small but consistent environmental effects on intraspecific wood
density variation (Figs 3, S7-S10; Tables S10-S13). Wood density
increased with temperature by 0.012 gcm ™ (standardized effect
size) and with water deficit by 0.010 g cm™?; it decreased weakly
with wind speed and soil pH (by —0.003 for both, Tables S10,
S11). These effects were strongly correlated with interspecific
effects (r=0.83; Fig. S11), but were smaller by 70-80% (Figs 3,
S7-S10; Tables S10-S13) and varied from one species to another
(Fig. 4). For example, a typical intraspecific increase in wood
density by 0.010 gcm ™ amounted to ¢ 25% of the respective
interspecific effect (0.038 gcm ™), and species varied widely
around this mean (SD =0.038 g cm™; Table S10).

© 2026 The Author(s).
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Patterns were comparable when modelling tropical and
extratropical species separately, but in the tropics, increases with
water deficit (O.Olchm73 within and 0.059gcm73 among
species) with pH (—0.014 within and
—0.033 gcm > among species) were stronger. In a separate

and decreases

analysis for gymnosperms, there was a clear intraspecific decrease
of —0.010 g cm > with soil pH and a strong intraspecific increase
with water deficit (0.034 g cm™?; Table S14; Fig. S12). Since some
species covered a narrow environmental gradient, effects were
weaker when rescaling effect sizes to realized environmental ranges
(Table S15; Figs S13, S14). For example, across a species’
temperature range (95% interval), tropical wood density increased
by an average of 0.012 gcm™>, and across a species’ water deficit
range by 0.032 g cm ™. Variation was much larger in some species,
with increases from 0.64 to 0.78 g cm ™ for a water deficit range of
950 to 1430 kg m™ > yr~ ' in Acacia acuminataBenth., but decreases
from 0.65 t0 0.50 g cm > between —170 and 470 kgm ™ *yr ' in
Symphonia globulifera L.£. (Fig. 4a).

5. The effect of intraspecific variation on wood density
estimation

Intraspecific variation strongly reduced the accuracy of wood density
estimates in undersampled species. A single wood density measure-
ment was a poor approximation of the species mean under
cross-validation (RMSE = 0.084 g cm™°); it was, in fact, comparable
to a genus mean that did not involve any sampling of the target species
(RMSE =0.083 gcme; Table S16). However, the accuracy of
species-level wood density estimates improved quickly with better
sampling. From the average of two measurements, species-level wood
density could already be predicted with RMSE = 0.056gcm >
(Table §16). Accuracy improved further when applying hierarchical
models that combined individual measurements with taxonomic
information from the remainder of the GWDD v.2 (RMSE =
0.038¢g cm > for two measurements; Tables S16, S17).

The wood density of individual plants was much harder to
predict from conspecifics, with an RMSE of 0.107 gcm ™ and
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Fig. 2 Variation in wood density across plant tissue types. Scatterplots of species means for densities of (a) heartwood vs sapwood, (b) trunkwood vs
branchwood and (c) trunkwood vs branchwood when measured in sapwood only. Every dot represents a species, blue lines are Major Axis regression lines,
dashed lines their 95% confidence intervals, with 1: 1 lines in solid black. Areas with high point densities are coloured brightly. The corresponding slope
estimates, with confidence intervals in square brackets, are provided in the bottom right corner. Panel (d) shows the distribution of trunk and branch wood
densities for 10 species, ordered by increasing trunk wood density. For visualization, we selected a maximum of 25 random samples for each species and
trunk/branch combination. Arrows indicate increases (blue) and decreases (red) in the median wood density from trunk to branch.

R =0.59 when estimated from a single local wood density
measurement (Fig. 5a; Tables S16, S17). Errors were lower when
pooling information with the GWDD v.2 via hierarchical
modelling, but the improvements were moderate (RMSE =
0.086gcm > or ¢ 20% of the raw estimate, and R =0.71,
Fig. 5b). Errors were similar when three measures from
local conspecifics were included, both as simple average
(IU\/[SEZO.OSchm_S) or based on a hierarchical model
(RMSE = 0.083 g cm ™ ?; Table S17).

IV. Discussion

Wood density is a key trait in plant ecology, acting as an indicator of
species’ competitive abilities (Kunstler ez 4/, 2016), demographic
rates (Adler ez al., 2014) and ecological strategies (King ez a/., 20065
Chave et al, 2009; Kraft et al, 2010). The importance of
species-level differences in wood density is well known (Phillips
et al., 2019). However, intraspecific variation is commonly
considered less relevant due to the large amounts of wood density
variation explained by taxonomic and phylogenetic relationships
(Chave et al., 2009), the strong genetic control over wood density
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(Cornelius, 1994; Zobel & Jett, 1995) and a limited contribution
to community-level variation in comparison with other plant traits
(Siefert eral., 2015). Given that intraspecific variation in traits plays
a crucial role for ecological processes (Bolnick et al., 2011; Des
Roches et al., 2018) and influences biomass estimates (Nogueira
et al., 2007; Momo et al, 2020), we here re-examined this
hypothesis at a global scale via the newly assembled Global Wood
Density Database v.2, which, compared with the previous version
(Zanne ez al., 2009), included > 6X as many records, more than
doubled the number of species, and added key information on
sources of intraspecific variation.

1. Intraspecific variation in wood density matters

In the GWDD v.2, intraspecific variation in wood density
(SD=0.068¢g cm°) was substantial and structured according to
both internal factors (within-plant structure) and external factors
(environment). Intraspecific variation accounted for up to 15% of
global wood density variation and followed predictable patterns
with environmental factors. Wood density increased with water
deficit and more weakly decreased with soil pH. These results were
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Fig. 3 Environmental predictors of wood density. Shown are the global effects of climatic and edaphic predictors on wood density, separated into
intraspecific (a) and interspecific effects (b). Estimates of effect sizes were derived from a Bayesian hierarchical model, with all predictors scaled by one SD
(Model M9, cf. Supporting Information Tables S3, S10). Climatic variables were from CHELSA/BIOCIM+ (Karger et al., 2017; Brun et al., 2022), edaphic
variables from soilgrids (Hengl et al., 2017). Median effect size and quantile ranges (66% and 95%) are shown as black dots and intervals. The effects of
cation exchange capacity were highly dependent on grid cell resolution and models, meaning effect sizes should be interpreted with caution (Fig. S7).

consistent across models and datasets (Tables S10-S13) and
confirmed expectations that plants with high wood densities should
be favoured in extreme and nutrient-poor environments (Muller-
Landau, 2004; Goutlet-Fleury ez al., 2011; Ibanez et al., 2017;
Anderegg et al., 2021; Yang et al., 2023). There was also a general
trend of increases in wood density with temperature, both in and
out of the tropics, which may also reflect higher risks of
drought-induced embolisms in hotter environments, but it was
not as clear as trends with water availability (Tables S10-S15).
Crucially, environmental effects at intraspecific level were strongly
correlated with interspecific effects (r= 0.83; Figs S11, S17) and
were also consistent with a companion study that found that
community-means of wood density increased with temperature
and aridity (Fischer ezal., 2025). This consistency of environmental
effects across scales was surprising, since previous studies found that
variation in plant traits is often shaped by scale-dependent
physiological and ecological mechanisms (Anderegg et al., 2018;
Wang ez al., 2022; Zhou ez al., 2022; Fajardo ez al., 2024). Wood
density, with its genetic limitations on variation, might thus be an
exception, with similar physiological constraints operating across
different levels of ecological organization.

We also found that previously hypothesized patterns of variation
in wood density within individuals (Woodcock & Shier, 2002;
MacFarlane, 2020) generalized to global scales. Across species and
studies, wood density varied less in sapwood than in heartwood and
less in branchwood than in trunkwood. Species with low-density
heartwood had denser sapwood and species with low-density
trunkwood had denser branchwood, and vice versa in both cases

© 2026 The Author(s).
New Phytologist © 2026 New Phytologist Foundation.

(Fig. 2a,b,d). An explanation for the heartwood-sapwood trends
may lie in distinct ecological strategies with changes in ontogeny
(Wiemann & Williamson, 1988; Woodcock & Shier, 2002; Hietz
eral.,2013), that is that some species tend to grow fast early in their
life, investing little in dense wood, but slow down in later life. The
opposite strategy — investing first in dense wood and then
accelerating diameter growth later in life — has also been suggested,
but appears less common (Osazuwa-Peters et al., 2014). Trunk-
branchwood patterns have been explained through stronger
functional constraints on branches than on trunks (MacFar-
lane, 2020; Momo ezal., 2020), butithas also been argued that they
may be explained by sapwood fractions (Gartner, 1995), since
corewood formation at the tip of the stem occurs at the same time as
the formation of outer wood at its base (cf. summary in Wiemann
& Williamson, 2013). Indeed, when we compared only sapwood
samples, differences between branch and trunkwood largely
disappeared (Fig. 2c). These results need to be qualified, however.
While we found clear global patterns, our findings relied on coarse,
binary distinctions between woody tissue types and thus glossed
over methodological differences between studies, as well as finer
biological details. Changes in wood properties from the pith to bark
or from the base of trunk to branches often follow nonlinear
patterns and vary strongly between individual plants (Schuldt
etal., 2013; Osazuwa-Peters et al., 2014; Terrasse et al., 2021), both
of which remain to be studied in future research.

Our study also demonstrated that intraspecific variation in wood
density has implications for applications, such as carbon stock
assessments or functional ecology. It is common practice to use
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(Figs 515, 516).

individual wood density measurements as estimates for species
means (Réou-Méchain ez al., 2017), but we found that individuals
were generally so variable that a species mean was less accurately
estimated from a single species measurement than from a genus
mean. When applying hierarchical models, we found strong
improvements in predictive accuracy for species means (from
RMSEs gcm 2 0f 0.084 down to 0.038 g cm > with two samples).
However, increased sampling and hierarchical models did not help
with predicting an individual plant’s wood density. Even from
three samples of local conspecifics, RMSEs did not decrease below
0.082¢ cm 2, indicating that there was substantial biological
variation among and within individuals that could not be explained
by site-specific environmental factors or phylogenetic relatedness.
We note, however, that our study could not examine the local
growth conditions and competitive neighbourhood of individuals,
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which likely play an important role in explaining intraspecific
variation in wood density (Kunstler ez 2/, 2016).

2. But intraspecific variation in wood density is also limited

Despite the importance of intraspecific variation in wood density,
we still found that its extent was limited. First, it accounted for less
of the total variance than taxonomic variation at species (17%),
genus (30%) or family (30%) levels. Second, average environ-
mental effects and wood density differences within individuals were
generally small (usually c. 0.01 gcm ™ or less, exceptionally .
0.02 gcm ). They amounted to only 20-30% of species-level
effects and were outweighed both by methodological uncertainties,
as may arise from differences in drying temperatures or wood
coring (estimated at SD = 0.049 gcm > when counting only
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between-study differences, Model M1, Tables 1, S4), and large
among-species variation in the direction and magnitude of
intraspecific effects (Fig. 4). For example, across species, we found
an average decrease of —0.023 g cm ™ from trunk to branchwood,
but species varied in this relationship with SD =0.075 (Model
M10, Table S8). This result means that branchwood density was
still higher than trunkwood density by > 0.015 gcm ™ in ¢. 30% of
species. Similarly, despite an intraspecific increase of wood density
with water deficit of 0.010 g cm ™2, species varied in this effect with
SD =0.038 gcm > (Model M16, Table $10), meaning that in .
30% of species wood density decreased with water deficit by a
similarly sized 0.010 g cm ™. Even among well-sampled species we
found that wood density shifts could vary from as low as
—0.15gcem ™2 to as high as +0.12 gcm ™ across a species’ water
deficit range (Fig. 4).

It is possible that these estimates of uncertainty and variation in
effect sizes were inflated. The GWDD v.2 is a large global database,
which unites data from a wide range of sources, increasing the risk
of unbalanced sampling and confounding factors. For example,
many measurements lacked information on geolocation and
within-plant location of samples (heartwood or sapwood, branch
or trunk). Equally, it is often unclear how volume and mass were
determined — directly in the field or after re-immersion in water
(Fearnside, 1997) — and at what temperatures wood samples were
dried, which introduces additional variation into estimates
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(Williamson & Wiemann, 2010). We accounted for these
differences by including the sampling source in models, fitting a
range of models for each question and testing different GWDD v.2
subsampling strategies. While this revealed robust patterns at
aggregate scale, interpretability of results for individual species
remained limited. For example, if a species was measured by two
studies in different locations and without clear documentation of
methodology, it was not possible to conclusively attribute the
sources of variation, and this may explain some of the uncertainty in
effect sizes seen even among well-sampled species (Fig. 4). Further
issues include scale mismatches, for example between environ-
mental predictors provided at 1 or 5km resolution and wood
density variation at finer scales (small-scale elevation gradients,
competition with neighbours, local growth conditions, such aslight
environment or waterlogging), as well as uncertainty in the
predictors themselves. Branchwood definitions, for example, vary
between studies, and global predictor layers come with considerable
levels of uncertainty, which introduces both systematic errors and
reduces effect sizes (Réjou-Méchain ez al., 2014). Most notably, the
effect of cation exchange capacity on wood density varied strongly
when assessed at 1 or 5km scales (Tables S10, S11) and even
changed qualitatively for a tropical subset of the GWDD v.2, for
example from 0.027 to —0.021 g cm ™. Itis likely that intraspecific
variation in wood density could be better predicted if large aridity
or temperature gradients were systematically sampled (Anderegg
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et al., 2021). However, even studies with systematic sampling
designs across large gradients often find variable effects of the
environment on intraspecific variation (Richardson ez al., 2013;
Rosas ez al., 2019), and replications of our analyses with higher-
quality subsets of the GWDD v.2 did not generally affect results.
For example, we still found the same small intraspecific increase
with water deficit (0.008 g cm ), the same large variation around
the mean effect (SD =0.039 g cm ™) and the same large effect of
0.045¢g cm ™ among species (Model M18, Table S10).

Opverall, thislarge variability in effect size and direction indicated
that intraspecific wood density variation, even when following
broad patterns, was difficult to predict. In practice, the inclusion of
the location of tissues (branch vs trunk) into hierarchical models of
wood density variation improved predictions at the species level
from RMSE=0.043 to 0.038¢g cm ° (assuming two wood
density measurements, Table S16), but impacts on individual
plant wood density estimates were minimal, with RMSE = 0.085
vs 0.084 g cm > (also assuming two wood density measurements,
Table S17). These findings are consistent with several previous
studies which found clear patterns for community- and species-
level wood densities (Swenson & Enquist, 2007; Chave ez /., 2009;
Kraft et al, 2010) where errors were smaller than total variation
among taxa, but could not replicate these results at the intraspecific
level, with patterns seemingly unpredictable (Richardson
et al, 2013; Fajardo, 2018; Rosas er al, 2019; Umafia &
Swenson, 2019). We also showed that environmental predictors
had the potential to improve predictions, with & = 0.71-0.73
compared with B = 0.63-0.64 in a purely taxonomic model, but
we did not build on this result, as we did not have consistent
geographic information for the entire GWDD v.2. Future
approaches might, for example, extend our approach by inferring
species’ climatic ranges and combine them with average intraspe-
cific effects to arrive at more accurate wood density estimates for
local-scale analyses or unsampled species (Schrodt ez al., 2015) and
use Bayesian approaches that can handle missing data (Ogle
et al., 2014). Based on reductions in RMSE in this study we
estimated that predictive improvements would be in the range of
0.01-0.02 gcm 2, or < 5% of mean wood density.

3. When to account for intraspecific variation in wood
density: a tale of two scales

Overall, our study showed that the decision of accounting for
intraspecific variation in wood density depends on the scale of the
research question. Measuring each individual’s wood density and
how it changes across its organs is paramount when studying
plastic growth responses in individual plants. Intraspecific
variation of up to 0.068 gcm_3 meant that two measurements
of individuals from the same species could easily be separated by
asmuch as £0.19 g cm > (95% interval of the difference between
two draws from a normal distribution with SD = 0.068 g cm ™).
This variability should be large enough to overwhelm most species
differences at a single site and led to large errors when predicting
an individual’s wood density, with R as low as 0.59 and RMSEs
as high as 0.108 gcm > in this study (Fig. 5). Intraspecific

variation in wood density may thus dominate species-level
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differences within communities or even across communities if
these are dominated by only a few species that are close in average
wood density values (cf. patterns in Anderegg er al, 2021).
Another case where intraspecific variation should be accounted for
is the determination of individual tree biomass from terrestrial
laser scanning (TLS). TLS-derived 3D volumetric models can give
precise volume estimates (Calders ez al., 2015), which then must
be combined with wood density to transfer volume to biomass.
However, TLS estimates can be costly to construct, and their
volume estimate precision only matters if wood density variation
among individuals and along the hydraulic pathway is accounted
for (Momo et al., 2020; Demol et al., 2021). Since we found
errors of at least 0.08 g cm ™ when predicting wood density at the
individual tree level (or between 10 and 20% of wood density,
assuming most plants have densities between 0.40 and
0.80 gcm ), studies likely cannot infer this variation but need
to systematically sample multiple individuals with at least two
samples per measurement location.

By contrast, if the aim is to assess average community structure
and vegetation dynamics at large scales or across steep environ-
mental gradients, it makes sense to prioritize taxonomic coverage
(Phillips ez al., 2019) over the exhaustive sampling of individuals
from a single species. First, as we showed here, variation at species or
higher taxonomic levels accounted for most variation in wood
density (77%). Second, environmental effects at the intraspecific
level aligned with interspecific effects (= 0.83). Third, variation
among and within individuals within sites is expected to average out
at the community level. Therefore, as long as a wide range of
communities is sampled, the omission of intraspecific effects
should not introduce systematic bias. In some cases, such as wood
density predictions via machine learning models (Yang
et al., 2024), it may even make sense to ignore intraspecific
information on purpose, as the risk of overfitting or mistaking small
methodological differences for biological variation outweighs the
benefits of small corrections of ¢. 0.01 gecm™> or less. Similarly,
intraspecific variation in wood density should play a minor role
when applying precalibrated allometric models to estimate tree
biomass, as its variance is dwarfed by other sources of uncertainty,
such as allometric models and estimates of plant size and shape
(Molto ezal., 2013; Chave ez al., 2014; Réjou-Méchain ezal., 2017;
Kindermann et al., 2022).

4. Global traits databases as backbones for hierarchical
models

A key takeaway of our study is that, no matter the level of analysis,
wood density measurements should not be treated as monolithic
true values. Rather, they are noisy trait estimates that can be refined
by including prior information through shared evolutionary
history or measurement locations (Ogle et al, 2014; Funk
et al., 2017). Here, we applied simple hierarchical models based
on taxonomic relationships and found that they vastly out-
performed simple averaging procedures, particularly for under-
sampled species. A single wood density measurement was as poor an
approximation of the species mean as a genus mean that did not
involve any sampling of the target species (Table S16), but errors
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decreased substantially when combining both in a hierarchical
model (Fig. 5; Tables S16, S17). Approaches could be refined by
explicitly accounting for phylogenetic relationships, but this
approach comes with its own challenges (Revell, 2010), and
taxonomic hierarchies provide a good approximation (cf.
hteps://statmodeling.stat.columbia.edu/2016/02/14/hierarchical-
models-for-phylogeny-heres-what-everyones-talking-about/, last
accessed on 9 September 2024, also Ogle ez al., 2014).

Opverall, our findings suggest that there is great value in open-
access trait databases, such as the GWDD v.2, as they synthesize
knowledge across a range of disciplines and help correct noisy local
estimates. They also provide insights on ecological strategies,
variation across biogeographic realms, and, with careful curation
and documentation (Augustine e al., 2024), allow us to explore
intraspecific variation. At the time of writing, v.1 of the GWDD has
been downloaded almost 20 000 times. Many of the applications of
this database have been in assessing forest carbon storage, in
connection with REDD+ projects or carbon credit accounting
programmes. As this sector is coming under closer scrutiny,
reducing uncertainty in carbon estimates is a timely ambition, and
the GWDD v.2 will be an important contribution. The findings in
this study provide more robust wood density estimates for a much
larger range of species and guidance on the importance of
intraspecific variation and how to account for it in ecological
studies. Furthermore, our results can be a foundation for theories
about the evolution of carbon investments in plants (Castorena
et al., 2022) and how to parameterize the underlying processes in
global dynamic vegetation models. In the future, we hope that the
openly available and thoroughly documented GWDD v.2 will
encourage the documentation and sharing of more wood density
datasets and the construction of similar databases for other traits.
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Data availability
The Global Wood Density Database v.2 and derived wood density

estimates at species and genus level are openly available on Zenodo
(doi: 10.5281/zen0d0.16919509). All data and code underpinning
the results of this article are publicly archived in a separate Zenodo
archive (doi: 10.5281/zenodo.16928342).
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