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A) Methods

Methods S1: Updating the first GWDD

Correcting inconsistencies

Entries in the first GWDD were updated to reflect structural changes in the GWDD v.2. In the
case of large collections that had previously been transformed — through conversion factors
or aggregation — or updated with new records since the publication of the first GWDD (llic et
al., 2000; Langbour et al., 2019; Vieilledent et al., 2018), we reintegrated the entire data sets
from scratch to ensure consistency. Where possible, this was done at the level of individual
plants instead of species means. If published manuals were based on or overlapped with
databases, but provided values for additional species from other sources (e.g., Détienne &
Jacquet, 1983 and Langbour et al., 2019), we first included the raw values from the databases
and then reincluded any non-matching taxa from the published literature to ensure
continuity. All values were transformed with the new correction factors. Where re-integration
would have been highly time-consuming or near-impossible (values from hard-to-access print-
only manuals such as Desch, 1941, or previous compilations, such as Reyes et al., 1992), we
inferred the source value by back-transforming entries with the original wood density
conversion factor and reapplying a corrected factor. In this case, the taxon identifier from the
original database was kept as species_reference and the column backtransformed is ticked. In
a few cases, sources in the first GWDD could not be accessed anymore (Database of Brazilian
Woods 2006, formerly: http://www.ibama.gov.br/Ipf/madeira/default.ntm) or have been
overwritten in the meantime (ICRAF database, http://db.worldagroforestry.org/wd). Records

exclusively attributed to these sources were removed (50 taxa in total, 1 lost genus, Table S2).

Database extension



In addition to updating the previous database, we searched the literature for new or
previously overlooked studies and extracted values either manually or from supplementary
files. To cover a wide range of trait values, we also wrote to authors of papers citing the
original GWDD paper (Chave et al., 2009) and asked them whether they would be willing to
participate in our effort, yielding more than 70 contributors (co-authors on this paper). While
not a primary aim, we also received data for a range of wood density types outside of the
scope of the first GWDD. For some tissue types (e.g., “bark” in type_tissue) and within-plant
locations (“root” in location_sample), we included these values, as they are directly linked to
intraspecific variation and form already part of some wood density assessments (e.g., bark is
not always removed before estimating wood density). However, we decided not to include
guantities such as green wood density (Niklas & Spatz, 2010) or dry mass fraction (Goodman
et al.,, 2013), as there is no clear conversion to wood specific gravity. A complete list of

literature references for wood density values can be found in Methods S2.



Methods S2: Literature references for wood density values
Below we provide all the sources of data for the GWDD v.2, and the number of records from

these sources. Note that these records also include bark density measurements.
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Asner et al. 2011. High-resolution carbon mapping on the million-hectare Island of Hawaii. Frontiers in Ecology and the Environment 9(8), 434—439. doi:10.1890/100179. Obtained from | 30
Appendixin Flint et al. 2014.
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Methods S3: Converting air- and ovendry density to basic wood density
For air- and ovendry wood densities robust conversion factors to basic density can be derived
(Vieilledent et al., 2018). The theory behind the conversion factors is as follows: wood is
composed of a variable fraction of water, some of which is free to move in conduits (tracheids
and vessels), and the rest is associated with other wood tissues including parenchyma and
fibers. During drying, free water is gradually lost, until reaching the so-called fiber saturation
point. The moisture at fiber saturation is quite variable across species from ca 10% to 50%,
with a typical value of ~30% (Berry & Roderick, 2005; Vieilledent et al., 2018). Beyond this
point, any further drying also shrinks the volume. If Vs is the volume of the sample at fiber
saturation moisture S, and Vy is the volume when the sample has lost all of its water, then the
volumetric shrinkage, or retractability, is the percent loss in volume R = (Vs-Vo)/Vs x 100, which
varies from 5% to 25% across species (Vieilledent et al., 2018).

From these values, it is possible to derive a conversion formula between wood density

at any moisture content w (Dw) and basic density (Dp):

D = 1—(R/100) x (S —w)
b 1+ w/100

X D,

This formula has been used together with the CIRAD wood technology database to derive
robust conversion factors (Vieilledent et al., 2018). The CIRAD wood technology database is a
collection of S, R, and D values for 3,832 individual trees with >10 samples per individual and
measurements at four moisture contents w (from 18% to 0%). The data set allows the
estimation of Dy at any w as well as an estimation of conversion factors to Dy by fitting
regression models with intercepts forced through the origin. For the GWDD v.2, we calculated

conversion factors for wood densities at four common moisture levels: 0.819 for airdry
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densities at w = 15%, 0.828 for airdry densities at w = 12%, 0.840 for airdry densities at w =

8%, and 0.868 for ovendry densities (or w = 0%).
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Methods S4: Details on Bayesian modelling of wood density variation

We fitted linear mixed-effects either with a Bayesian framework in the brms R package
(Blirkner, 2018) and the maximume-likelihood framework of Ime4 (Bates et al., 2015). We
assume basic familiarity with mixed-effect model fitting in R (formulae provided in Table S3),

and will only focus on details particular to the Bayesian context.

1/ Distributional model: Unlike Ime4, brms allows to explicitly model the distributional

parameter o (i.e., the width of the residual distribution). We here use this to allow o to vary
across the same taxonomic groupings as the response variable (wood density). Given that
variances are constrained to be positive and typically follow a lognormal distribution, we used
the brms default of modelling o on log-scales. In R’s common random effects model notation,
this can be simply expressed as log(c) ~ 1 + (1 | species) or log(c) ~ 1 + (1 | family / genus /
species), but we note that in brms, the log-transformation is carried out automatically, so we
redefine the distributional parameter as ¢” = exp(o) and write: 6" ~ 1 + (1 [ species) or o™ ~ 1
+ (1 | family / genus / species). A visual check of the assumption of lognormality is provided in

Fig. S4.

2/ Prior specifications: Bayesian modelling requires the specification of priors, i.e. the

provision of initial distributions for the parameters to be modelled. Since the data sets used
in this study are large, exact prior choices have little influence on the resulting inference.
Nevertheless, specification of weakly informative priors is recommended to constrain the
initial parameter space and provide weak constraints on expected effect sizes (a form of

regularization). Throughout all wood density models, we chose the following priors:
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Intercept ~ N(0.5,0.25);lb =0
Population level (fixed) ef fects ~ N(0.0,0.1)

Group level (random) ef fects ~N(0.1,0.1);lb =0

Here, /b stands for “lower bound”. This means that we broadly expect the intercept for any
wood density model to lie between 0 and 1.0, with fixed effects broadly constrained between
-0.2 and 0.2, and random effects broadly constrained between 0 and 0.3 (all 95% intervals).
Given that most wood density values lie between 0.3 and 0.8 and that we always standardize
predictors (scaling and centering), effect sizes outside this range would be very large. Compare
also to model results, where fixed effect sizes usually lie within a much more restricted [-0.05,
0.05] and never exceed [-0.1, 0.1]. In addition, we specify the following priors on the

distributional parameter o = log(c”):

Intercept ~ N(—3.0,0.5)

Group level (random) ef fects ~ N(0.5,0.5);lb =0

This corresponds to a realized o” = exp(-3.0) ~ 0.5, with an approximate range of [0.02, 0.14].

3/ Model fitting and checks: All brms models were fit with adapt _delta == 0.95 and

max_treedepth == 10. We always ran 4 chains in parallel, with 2000 iterations (including 1000
for warmup) and checked against warnings about divergent transitions, effective sampling
sizes (ESS), and the mixing of chains (R-hat <= 1.02). If ESS were low, we increased the total
number of iterations up to 5000. Model fits were visually checked via the inbuilt pp_check()

function (representative examples in Fig. S3).
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Methods S5: Overview over R packages

For completeness, we here list all R packages used in the study. They include terra (Hijmans,
2023), data.table (Dowle & Srinivasan, 2023), Ime4 (Bates et al., 2015), brms (Birkner, 2018),
WorldFlora (Kindt, 2020), ggplot2 (Wickham, 2016), ggdist (Kay, 2024), patchwork (Pedersen,
2024), viridis (Garnier et al., 2023), sjPlot (Lidecke, 2021), Imodel2 (Legendre, 2018),
rnaturalearth (Massicotte & South, 2023), rnaturalearthdata (South, 2017), corrplot (Wei &

Simko, 2021).
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B) Tables

# Field Description

1 id overall primary id of the record

2 species species after spell-checking and resolution (WFO)

3 group group after spell-checking and resolution (WFO)

4 order order after spell-checking and resolution (WFO)

5 family family after spell-checking and resolution (WFO)

6 genus genus after spell-checking and resolution (WFO)

7 epithet species epithet after spell-checking and resolution (WFO)

8 epithet_infraspecific |infraspecific epithet after spell-checking and resolution (WFO)

9 authority taxonomic authority after spell-checking and resolution (WFO)

10 status_taxonomic taxonomic status after spell-checking and resolution (WFO): "accepted", "unresolved",
“unchecked”

11 rank_taxonomic taxonomic rank after spell-checking and resolution (WFQ): "genus", "species", "subspecies",
"variety", "hybrid"

12 source_taxonomic identifier after spell-checking and resolution (WFO)

13 wsg wood specific gravity / basic wood density

14 plant_agg is measurement aggregated over several individuals: 0 or 1, or NA if unclear

15 plants_sampled number of individuals aggregated over: > 1, if plant_agg == 1, else 1 or NA

16 location_sample the within-tree location of the sample: "root","bole","branch","twig", "shoot”, NA

17 type_tissue the type of woody tissue sampled: "sapwood","heartwood","bark", "total (bark to pith)"

18 region one of nine regions: "South America", "Central America and West Indies", "North America",
"Asia", "South-East Asia", "Africa", "Indian Ocean", "Europe", "Oceania"

19 country country of measurement

20 site site of measurement, at various levels of precision

21-22 |longitude/latitude coordinates of the site of measurement

23 type_forest type of forest, can contain locally specific types

24-26 |id_plant/age/dbh Individual plant-level information on IDs, age and diameter

27 experiment is the study an experiment? if collected during an experiment 1, else 0

28 experiment_design design of the study or experiment if applicable

29 source_short the short name of the source of measurements

30 source_long the full name of the source of measurements

31 contributor the contributor of the data set

32 id_dboriginal the id of the sample in the original database

33 species_reference the taxon supplied to the GWDD v.2

34 genus_reference the genus supplied to the GWDD v.2

35 epithet_reference the epithet supplied to the GWDD v.2

36 epithet_infraspecific_ |the infraspecific epithet supplied to the GWDD v.2

reference
37 species_reference_ the taxon supplied to the GWDD v.2., stripped of additional information such as taxonomic
canonical authorities

38 value_reference the (untransformed) wood density supplied to the GWDD v.2

39 quantity_reference  [the type of wood density that was measured: "Airdry SG/Density", "Ovendry SG/Density",
"Basic SG/Density"

40 moisture_airdry the moisture at which wood was considered airdry (%): 8, 12, 15 if airdry, else NA

41 wsg_conversion the conversion factor to convert airdry or ovendry densities: 1.0 (Basic SG), 0.8676046
(Ovendry SG), 0.8404015 (8% SG), 0.8281316 (12% SG), 0.8194401 (15% SG)

42 backtransformed is the value backconverted from the GWDD v.1? 0 or 1 (only applied to legacy data)

43 type_sample the type of sample: "core", "disk"

44 instrument the instrument used to obtain wood density

45 temperature_drying |[the temperature at which samples have been dried

Table S1: Documentation of Global Wood Density Database (GWDD) v.2 columns. Given is the column ID, their
name and a short description. “WFQO” stands for WorldFloraOnline, which was used for taxonomic resolution.

“SG” stands for “specific gravity”.
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Binomial Resolved ‘
Acacia alleniana Acacia alleniana

Acacia colei Acacia colei

Acacia trinervata Acacia trinervata

Acioa edulis Acioa edulis

Aglaia hiernii Aglaia hiernii

Albizia dinklagei

Albizia dinklagei

Albizia lebbekoides

Albizia lebbekoides

Alloxylon flammeum

Alloxylon flammeum

Anacardium tenuifolium

Anacardium tenuifolium

Aspidosperma decussatum

Aspidosperma decussatum

Atalaya australiana

Atalaya australiana

Borassus flabellifer

Borassus flabellifer

Breonia madagascariensis

Breonia madagascariensis

Bruguiera exaristata

Bruguiera exaristata

Calliandra calothyrsus

Calliandra houstoniana var. calothyrsus

Calliandra tweediei

Calliandra tweediei

Corymbia dallachiana

Corymbia dallachiana

Couepia robusta

Couepia robusta

Cullen australasicum

Cullen australasicum

Dicymbe corymbosa

Dicymbe corymbosa

Diospyros cayennensis

Diospyros cayennensis

Dipteryx ferrea

Dipteryx ferrea

Endiandra dielsiana

Endiandra dielsiana

Eucalyptus glomerosa

Eucalyptus glomerosa

Eucalyptus urophylla

Eucalyptus urophylla

Grewia crenata

Grewia prunifolia

Huertea cubensis

Huertea cubensis

Lacistema grandifolium

Lacistema grandifolium

Leucaena diversifolia

Leucaena diversifolia

Licania fanshawei

Licania fanshawei

Licania jimenezii

Licania jimenezii

Licania pallida

Licania pallida

Licania sparsipilis

Leptobalanus sparsipilis

Licaria rigida

Licaria rigida

Litsea breviumbellata

Litsea breviumbellata

Magnolia yoroconte

Magnolia yoroconte

Micrandra minor

Micrandra minor

Mischocarpus stipitatus

Mischocarpus stipitatus

Mouriri pseudogeminata

Mouriri pseudogeminata

Nectandra krugii

Nectandra krugii

Parashorea aptera

Parashorea aptera

Pinus hartwegii

Pinus hartwegii

Pittosporum angustifolium

Pittosporum angustifolium

Polyalthia asteriella

Monoon asteriellum

Pouteria izabalensis

Pouteria izabalensis

Pouteria oblanceolata

Pouteria oblanceolata

Pouteria obscura

Pouteria obscura

Pterocarpus osun

Pterocarpus osun

Rauvolfia paraensis

Rauvolfia paraensis

Rhodamnia glauca

Rhodamnia glauca

RIRr(R|Rr[R|[R|R[N|R[R|R[RP|W|Rr|[R[R|IN[N|R[R|R|R|R|R[R|N|[R|R|[R|R|R|IR[R|dR|R|(R|R|(R|R|R[R|IN[R|R RPN~

Table S2: Removed taxa in the Global Wood Density Database (GWDD) v.2. Shown are taxa from the GWDD v.1

whose references could not be verified and whose records are not available anymore in the GWDD v.2. We also

provide their resolved names from World Flora Online (WFO) and their number of entries in the GWDD v.1. With

one exception (Cullen australicum), the removal of the taxa did not result in the loss of the corresponding genus.
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Model ‘Question

Data subset

Subsetting procedure

‘Model formula

M1 n =79,488, Ngyeies = 10,780  |full set of measurements from individual plants wd ~ 1+ (1 | family / genus / species) + (1 | source)
M2 X Extent ?f_ n =79,488, Ngyecies = 10,780 full set of measurements from individual plants wd ~ 1+ (1| family / genus / species)
intraspecific
M3 variation n =49,991, Ngpecies = 2735 higher quality (>= 3 individuals per species, >= 3 species per genus, >= 3 genera per family) wd ~ 1+ (1| family / genus / species) + (1 | source)
M4 n =49,991, Ngpecies = 2735 higher quality (>= 3 individuals per species, >= 3 species per genus, >= 3 genera per family) wd ~ 1+ (1| family / genus / species)
M5 n =19,246, Ngpecies = 147 minimum quality (>= 2 sites per species, >= 2 individuals for one site, >= 2 records for one individual) [wd ~ 1+ (1 | species /site /id_plant) + (1 | source)
M6 P.artitionin.g.of n = 19,246, Ngyecies = 147 minimum quality (>= 2 sites per species, >= 2 individuals for one site, >= 2 records for one individual) [wd ~ 1+ (1 | species / site /id_plant)
M7 m::::g:s:lc n= 2,494, Ngecies = 35 higher quality (>= 3 sites per species, >= 3 individuals for one site, >= 3 records for one individual) wd ~ 1+ (1| species / site / id_plant) + (1 | source)
M8 n= 2,494, Ngecies = 35 higher quality (>= 3 sites per species, >= 3 individuals for one site, >= 3 records for one individual) wd ~ 1+ (1| species /site /id_plant)
M9 N =679, Ngpecies = 150 species with >= 1 measurement each from heartwood and sapwood wd ~ 1+ sapwood + (1 + sapwood | species) + (1 | source)
M10 n = 48,494, Ngyecies = 2,018 species with >= 1 measurement each from branch and trunk wd ~ 1+ branch + (1 + branch | species) + (1 | source)
M11 Nspecies = 150 species with >= 1 measurement each from heartwood and sapwood; species means Wsapwood ~ Wheartwood (MA regression)
mM12 ng:::::::t Nspecies = 2,018 species with >= 1 measurement each from branch and trunk; species means Wdpranch ~ Wdrunk (MA regression)
m13 Nspecies = 523 species with >= 1 measurement each from branch sapwood and trunk sapwood; species means Wdpranch ~ Wirunk (MA regression)
M14 Nspecies = 189 species with 5 randomly drawn measurements from both branch and trunk; species means Wdpranch ~ Wdirunk (MA regression)
M15 N = 3,527, Ngpecies = 145 Individual plants with 1 randomly drawn measurement from both branch and trunk Wdpranch ~ Wdirunk (MA regression)
M16 n =41,893, Nspecies = 2,160 species with >= 2 distinct locations wd ~ 1+ envlkMggecies + €NVIKMintrasp + (1 + €nvikMinasp | Species) + (1 | source)
Mm17 Environmental |, = 41 893, Nspecies = 2,160 species with >= 2 distinct locations wd ~ 1+ env5kMgpecies + €NV5KMintrasp + (1 + €nV5KkMinerasp | Species) + (1 | source)
predictors of - - — - — — - - -
M18 intra.sp?cific N = 30,128, Nupecie = 692 :2):;:55) with >= 2 distinct locations + wide intraspecific predictor range (one predictor in top 10% of W~ 1+ envIkMapecies + €NVIKMirasp + (1 + €NVIKMineasy | species) + (1 | source)
variation
M19 N=30,128, Nypeces = 692 :;)s;;s) with >= 2 distinct locations + wide intraspecific predictor range (one predictor in top 10% of Wd ~ 1+ envSkMapeses + €NVSkMirasp + (1 + €nVSkMinyasy | species) + (1 | source)
M20 n = 8,783, Ngpecies = 700 species with >= 3 distinct locations in the tropics wd ~ 1+ envlkMggecies + €NV1KMintrasp + (1 + €nVvikMigasp | Species) + (1 | source)
Environmental
M21 predictors n = 8,783, Ngpecies = 700 species with >= 3 distinct locations in the tropics wd ~ 1 + env5kMgpecies + €NV5KMingrasp + (1 + €NV5KMingrasp | Species) + (1 | source)
M22 (t"OPiCE"I /I n = 26,437, Ngpecies = 247 species with >= 3 distinct locations outside the tropics wd ~ 1+ envlkMggecies + €NVIKMintrasp + (1 + €nVvikMigasp | Species) + (1 | source)
m23 extratropical N = 26,437, Ngpecies = 247 species with >= 3 distinct locations outside the tropics wd ™ 1+ env5kMpecies + €NVSKMingrasp + (1 + @NVSkMinirasp | species) + (1 | source)
M24 Enviror?mental n = 12,089, Nspecies = 59 species with >= 2 distinct locations; gymnosperms only wd ~ 1 + envlkMgpecies + €NVIKMingrasp + (1 + €NVIkMineasp | Species) + (1 | source)
M25 (gy’:;fi‘i:;::;s) n =12,089, Nspecies = 59 species with >= 2 distinct locations; gymnosperms only wd ~ 1 + env5kMgpecies + €NV5KMingrasp + (1 + €NVS5KMingrasp | Species) + (1 | source)
M26 L variable full GWDD v.2, but tested on Ngeces = 1,667 (records from >= 5 sources) wd ~ 1+ (1| family / genus / species) + (1 | source / site)
Mm27 Predictivity variable full GWDD v.2, but tested on ngeces = 318 (species with >= 3 sites, one site with >= 4 records) wd ~ 1+ branch + (1 + branch | family / genus / species) + (1 | source / site)

Table S3: Overview over models and data subsets. This is a quick reference for combinations of data subsets and models used in this study, the questions they address, and

the subsetting procedure. Except for models M11-M15, which were fitted with Major Axis regression (“MA regression”), model formulas are provided in the mixed-effects

model notation employed by the R packages Ime4 (Bates et al., 2015) and brms (Birkner, 2018) and fitted with both approaches. In the latter, we explicitly modelled the

distributional parameter ¢* = exp(c), where o is the root of residual variance, as 6" ~ 1 + (1 | species) or 6"~ 1 + (1 | family / genus / species), in line with random effects used
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for the response variable wd. The predictor envikm is a shorthand for six environmental and edaphic predictors from CHELSA (Brun et al., 2022; Karger et al., 2017) and
soilgrids at 1km resolution (Hengl et al., 2017), env5km for the equivalents from TerraClimate (Abatzoglou et al., 2018) and soilgrids (5 km). All environmental and edaphic

predictors were split into species means (subscript “species”) and within-species deviations from species means (subscript “intrasp”).
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M1: Full dataset

M2: Full dataset

M3: High quality subset

M4: High quality subset

brms/STAN (incl. source effect) (no source effect) (incl. source effect) (no source effect)
Wood density (g cm3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.557 [0.540; 0.575] 0.554 [0.538; 0.569] 0.579 [0.554; 0.605] 0.575 [0.552; 0.599]
Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var)
family 0.098 (30%) 0.098 (32%) 0.067 (17%) 0.065 (17%)
family:genus 0.097 (30%) 0.098 (32%) 0.092 (33%) 0.094 (36%)
family:genus:species 0.074 (17%) 0.077 (20%) 0.077 (23%) 0.079 (26%)
source 0.049 (8%) 0.049 (9%)

residual (o) 0.068 (15%) 0.071 (17%) 0.068 (18%) 0.071 (21%)
log(o) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) -2.796  [-2.830;-2.764] | -2.786  [-2.818;-2.753] | -2.740  [-2.794; -2.686] -2.727 [-2.780; -2.679]
Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var)
family 0.128 (9%) 0.122 (8%) 0.119 (8%) 0.114 (7%)
family:genus 0.173 (16%) 0.167 (15%) 0.194 (20%) 0.189 (19%)
family:genus:species 0.372 (75%) 0.375 (77%) 0.367 (72%) 0.367 (73%)
Sampling size (N)

family 249 249 40 40

family:genus 2576 2576 367 367
family:genus:species 10780 10780 2735 2735

source 293 265

total 79488 79488 49991 49991

Table S4: Variance components of wood density across the taxonomic hierarchy (brms). Shown are the results

of four different random effects models (varying intercept models) fitted with the brms R package and the STAN

software (Blrkner, 2018; Carpenter et al., 2017). The default model (M1) is fitted to the full set of measurements

from individual plants and includes nested random effects for taxonomic groupings (species-level variation

nested within genera, genus-level variation nested within families), as well as a crossed random effect for study

methodology (“source”). Shown are also a simpler model (M2, no random effect for methodology) and the same

two models fitted to a subset of records with higher quality (>= 3 records per species, >= 3 species per genus, >=

3 genera per family, M3 and M4). Throughout, the spread of residuals, g, is itself modelled as varying between
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species with a nested random effects structure on log-scales (species within genera, genera within families). For
simplicity, we also provide the residual variance on untransformed scales (o = root of variance of residuals, where
residuals are calculated as posterior means). The percentage of total variance explained is provided in brackets
next to each variance component (random effects + residual variance). Point estimates are posterior means,

intervals 95% credibility intervals, abbreviated as Cls.
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M1: Full dataset

M2: Full dataset

M3: High quality subset

Ma4: High quality subset

Ime4 (incl. source effect) (no source effect) (incl. source effect) (no source effect)
Wood density (g cm3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.561 [0.544; 0.577] 0.555 [0.540; 0.570] 0.582 [0.557; 0.606] 0.576 [0.553; 0.599]
Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var)
family 0.096 (29%) 0.096 (30%) 0.063 (16%) 0.062 (16%)
family:genus 0.095 (29%) 0.096 (30%) 0.092 (33%) 0.093 (36%)
family:genus:species 0.079 (20%) 0.080 (21%) 0.079 (24%) 0.080 (26%)
source 0.046 (7%) 0.046 (8%)

residual (o) 0.071 (16%) 0.074 (18%) 0.069 (19%) 0.073 (22%)
Sampling size (N)

family 249 249 40 40

family:genus 2576 2576 367 367
family:genus:species 10780 10780 2735 2735

source 293 265

total 79488 79488 49991 49991

Table S5: Variance components of wood density across the taxonomic hierarchy (Ime4). Same as Table 5S4, but

using reduced maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and not

explicitly modelling the residual distribution. Intervals are 95% confidence intervals (Wald method).
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brms/STAN M?: Minimum quality M6: Minimum quality _M7: High quality M8: High quality
(incl. source effect) (no source effect) (incl. source effect) (no source effect)

:I;Ic::gs;iensity Estimate cl Estimate cl Estimate cl Estimate cl

(Intercept) 0.560 [0.542; 0.578] 0.564 [0.547; 0.582] 0.571 [0.524; 0.615] 0.575 [0.536; 0.610]

Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var)

species 0.098 (72%) 0.101 (78%) 0.100 (58%) 0.104 (70%)

species:site 0.025 (5%) 0.032 (8%) 0.035 (7%) 0.042 (11%)

species:site:idplant 0.017 (2%) 0.017 (2%) 0.028 (5%) 0.028 (5%)

source 0.035 (9%) 0.057 (19%)

residual 0.040 (12%) 0.040 (12%) 0.045 (12%) 0.045 (13%)

log(o) Estimate cl Estimate cl Estimate cl Estimate cl

(Intercept) -3.015 [-3.116; -2.916] -3.029 [-3.127;-2.929] -3.049 [-3.233;-2.870] -3.040 [-3.223; -2.859]

Random effects Estimate Estimate Estimate Estimate

species 0.588 0.588 0.531 0.538

Sampling size (N)

source 95 20

species 147 147 35 35

species:site 1270 1270 233 233

species:site:idplant 14373 14373 1052 1052

total 19246 19246 2494 2494

Table S6: Variance components of wood density within species (brms). Shown are the results of four different
random effects models fitted with brms/STAN (Bates et al., 2015; Carpenter et al., 2017), in order to partition
within-species variance. The default model (M5) is fitted to a GWDD v.2 subset with minimum quality
requirements (only species with >= 2 sites, at least one site with >= 2 plants, at least one plant with >= 2 records)
and includes nested random effects (plant-level variation nested within sites, site-level variation nested within
species), as well as a crossed random effect for study methodology (“source”). In addition, a simpler model is
presented (M6, no random effect for methodology) and the same two models fitted to a higher quality subset
(species with >= 3 sites, at least one site with >= 3 plants, at least one plant with >= 3 records, M7 and M8). As
described in Table S3, o is modelled on log-scales, but residual variance is calculated on the original scales. The
percentage of total variance explained is provided in brackets next to each variance component. Point estimates

are posterior means, intervals 95% credibility intervals.
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Ime4

M5: Minimum quality
(incl. source effect)

M®6: Minimum quality
(no source effect)

M7: High quality
(incl. source effect)

M8: High quality
(no source effect)

Wood density (g cm3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.560 [0.541; 0.579] 0.565 [0.549; 0.581] 0.573 [0.530; 0.615] 0.575 [0.541; 0.608]
Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var)
species 0.094 (64%) 0.097 (68%) 0.092 (50%) 0.096 (58%)
species:site 0.045 (15%) 0.050 (18%) 0.050 (15%) 0.060 (23%)
species:site:idplant 0.018 (2%) 0.018 (2%) 0.028 (5%) 0.028 (5%)
source 0.031 (7%) 0.054 (17%)

residual 0.041 (12%) 0.041 (12%) 0.047 (13%) 0.047 (14%)
Sampling size (N)

source 95 20

species 147 147 35 35

species:site 1270 1270 233 233
species:site:idplant 14373 14373 1052 1052

total 19246 19246 2494 2494

Table S7: Variance components of wood density within species (Ime4). Same as Table S6, but using reduced

maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and not explicitly modelling

the residual distribution. Intervals are 95% confidence intervals (Wald method).

36




M9: Sapwood M9: Sapwood M10: Branchwood M10: Branchwood
(brms) (Imed) (brms) (Imed)
Wood density (g cm3) | Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.572 [0.533; 0.613] 0.575 [0.536; 0.613] 0.601 [0.593; 0.609] 0.603 [0.595; 0.611]
sapwood -0.001 [-0.028; 0.025] -0.003 [-0.030; 0.024]
branch -0.023 [-0.029; -0.017] -0.027 [-0.033; -0.021]
Random effects Estimate Estimate Estimate Estimate
species 0.174 0.174 0.137 0.139
source 0.035 0.032 0.044 0.045
sapwood 0.060 0.055
branch 0.075 0.083
residual 0.068 0.080 0.065 0.067
log(o) Estimate cl Estimate cl
-2.787 [-2.925; -2.655] -2.714 [-2.738; -2.690]
Random effects Estimate Estimate
species 0.448 0.401
Sampling size (N)
source 15 15 529 529
species 150 150 2018 2018
total 679 679 48494 48494

Table S8: Within-plant effects on wood density variation (brms + Ime4). Shown are the results of two different

mixed effects models (random intercept/random slope models) fitted either with brms/STAN software (Burkner,

2018; Carpenter et al., 2017) or Ime4 (Bates et al., 2015) to explore within-plant variation in wood density. In

M9, we model wood density as varying from heartwood to sapwood via a fixed effect for heartwood-sapwood

(sapwood == 0 vs. sapwood == 1) as well as random intercepts and slopes at species level and a crossed random

effect for study methodology (“source”). M10 has the same model structure, but with a fixed effect and random

slopes for the trunkwood-branchwood distinction (branch == 0 vs. branch == 1). In the Bayesian models (brms),

we also allow the spread of residuals (o) to vary on log-scales across species. Intervals are 95%

credibility/confidence intervals (Wald method for ML estimates).
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(individual plants)

Model Estimate ci
M11: Sapwood- Intercept 0.160 [0.106; 0.210]
Heartwood
Slope 0.673 [0.589; 0.764]
r = 0.78, Nepecies = 150
M12: Branchwood- Intercept 0.123 [0.100; 0.145]
Trunkwood
Slope 0.757 [0.721; 0.795]
r = 0.67, Nepecies = 2018
M13: Branchwood- Intercept 0.062 [0.020; 0.102]
Trunkwood
(sapwood only) Slope 0.871 [0.808; 0.938]
r=0.76, Nspecies = 523
M14: Branchwood-
Trunkwood Intercept 0.070 [0.006; 0.128]
(high quality subset) | ¢, 0.861 [0.761; 0.972]
r=0.76, Nspecies = 189
M15: Branchwood- Intercept  0.014 [0.004; 0.025]
Trunkwood Slope  0.988 [0.969; 1.009]

r= 085, n= 3,527, Nspecies = 145

Table S9: Within-plant convergence in wood density (Imodel2). Shown are results from five Major Axis

regression models, fitted with the Imodel2 package in R (Legendre, 2018), to explore whether wood density

converges towards sapwood and branchwood. Model M11 regresses mean sapwood densities of 150 species

against their mean heartwood densities, Model M12 regresses mean branchwood densities of 2,018 species

against their mean trunkwood densities. M13-15 are equivalent to M12, but M13 uses only sapwood

measurements from branches and trunks, M14 a high-quality subset of measurements (>= 5 measurements of

branches and >= 5 measurements of trunks), and M15 only measurements where both branch and trunk samples

have been taken from the same plant, and regresses them at the individual plant instead of the species level.

Intervals are parametric 95% confidence intervals.
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M16: Full dataset

M17: Full dataset

M18: High quality subset

M19: High quality subset

brms/STAN CHELSA 1 km TerraClimate 5 km CHELSA 1 km TerraClimate 5 km
Wood density (g cm3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.554 [0.544; 0.564] 0.559 [0.548; 0.569] 0.540 [0.526; 0.554] 0.546 [0.532; 0.559]
Temperature (intrasp) 0.012 [0.002; 0.022] 0.003 [-0.007; 0.013] 0.013 [0.001; 0.024] 0.004 [-0.007; 0.015]
Water deficit (intrasp) 0.010 [0.005; 0.015] 0.012 [0.006; 0.018] 0.008 [0.001; 0.014] 0.011 [0.005; 0.018]
Wind speed (intrasp) -0.003 [-0.007; 0.000] -0.006 [-0.011; -0.001] -0.001 [-0.006; 0.003] -0.003 [-0.008; 0.002]
Sand fraction. (intrasp) 0.003 [-0.002; 0.007] -0.003 [-0.007; 0.002] 0.006 [0.002; 0.011] 0.004 [-0.001; 0.008]
Soil pH (intrasp) -0.003 [-0.008; 0.002] -0.005 [-0.010; -0.000] -0.002 [-0.008; 0.003] -0.005 [-0.010; 0.000]
Cat. ex. cap. (intrasp) 0.009 [0.004; 0.013] 0.001 [-0.004; 0.006] 0.003 [-0.002; 0.008] -0.002 [-0.008; 0.004]
Temperature (species) 0.022 [0.009; 0.034] 0.013 [0.000; 0.025] 0.002 [-0.015; 0.019] -0.005 [-0.024; 0.012]
Water deficit (species) 0.038 [0.027; 0.048] 0.036 [0.025; 0.047] 0.045 [0.027; 0.062] 0.042 [0.026; 0.058]
Wind speed (species) -0.017 [-0.027; -0.007] -0.013 [-0.022; -0.004] -0.021 [-0.038; -0.003] -0.016 [-0.032; -0.001]
Sand fraction. (species) 0.002 [-0.008; 0.012] -0.000 [-0.010; 0.011] -0.008 [-0.025; 0.010] -0.008 [-0.025; 0.010]
Soil pH (species) -0.013 [-0.024; -0.001] -0.014 [-0.028; -0.001] -0.010 [-0.029; 0.008] -0.018 [-0.038; 0.002]
Cat. ex. cap. (species) 0.020 [0.008; 0.032] 0.001 [-0.010; 0.012] 0.012 [-0.005; 0.030] -0.001 [-0.017; 0.016]
Random effects Estimate Estimate Estimate Estimate

species 0.114 0.114 0.112 0.112

source 0.051 0.051 0.053 0.052

Temperature (intrasp) 0.058 0.061 0.060 0.059

Water deficit (intrasp) 0.038 0.032 0.039 0.033

Wind speed (intrasp) 0.019 0.025 0.022 0.025

Sand fraction. (intrasp) 0.029 0.033 0.018 0.019

Soil pH (intrasp) 0.035 0.030 0.029 0.024

Cat. ex. cap. (intrasp) 0.024 0.031 0.021 0.032

residual 0.062 0.062 0.054 0.055

log(o) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) -2.772 [-2.802; -2.743] -2.766 [-2.796; -2.736] -2.860 [-2.906; -2.814] -2.854 [-2.902; -2.808]
Random effects Estimate Estimate Estimate Estimate

species 0.497 0.500 0.463 0.468
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Sampling size (N)

source

species

total

366 366 338 338
2160 2160 692 692
41879 41893 30128 30128

Table S10: Environmental predictors of wood density variation (brms). Shown are the results of four different
mixed effects models (varying intercept/varying slope models) fitted with brms/STAN software (Birkner, 2018;
Carpenter et al., 2017) to explore environmental predictors of wood density variation within and across species.
All models have the same structure, relying on three environmental predictors (annual means of temperature,
water deficit, and wind speed) and three edaphic predictors (mean sand content, mean pH, mean cation
exchange capacity). All six predictors are standardized (scaled) and split into species mean values (indicated by
“species”) and within-species deviations from the species means (indicated by “intrasp”). Species are allowed to
vary both in their intercept and in their within-species effects (varying slopes). In addition, we include a crossed
random effect for the measurement source/methodology, and allow the distributional parameter o to vary
across species. M16 and M17 are fitted to all species in the GWDD v.2 with wood density records from at least
two distinct geographic locations (explicit coordinates), but differ in their environmental layers and scale of
aggregation: M16 uses 1 km resolution data from CHELSA (Brun et al., 2022; Karger et al., 2017) and soilgrids
predictions pre-aggregated at 1 km (Hengl et al., 2017). M17 uses ~4-5 km resolution data from TerraClimate
(Abatzoglou et al., 2018) in conjunction with pre-aggregated 5 km soilgrids data. M18 and M19 use the same
model structures, but restrict wood density records to species that display large within-species environmental
or edaphic gradients, including only species for which the range of at least one environmental or edaphic
predictor is in the top 10% of all species’ ranges for that predictor. Point estimates are posterior means, intervals

95% credibility intervals. A visualization of effect sizes can be found in Figures S7-8.
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Ime4

M16: Full dataset

M17: Full dataset

M18: High quality subset

M19: High quality subset

CHELSA 1 km TerraClimate 5 km CHELSA 1 km TerraClimate 5 km
Wood density (g cm-3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.555 [0.545; 0.565] 0.559 [0.548; 0.569] 0.540 [0.526; 0.554] 0.544 [0.530; 0.558]
Temperature (intrasp) 0.013 [0.002; 0.024] 0.001 [-0.009; 0.012] 0.014 [0.002; 0.026] 0.002 [-0.010; 0.014]
Water deficit (intrasp) 0.010 [0.004; 0.015] 0.014 [0.007; 0.021] 0.007 [0.000; 0.014] 0.012 [0.004; 0.021]
Wind speed (intrasp) -0.003 [-0.007; 0.000] -0.008 [-0.013; -0.004] -0.002 [-0.007; 0.003] -0.005 [-0.011; 0.001]
Sand fraction. (intrasp) 0.004 [-0.002; 0.009] -0.004 [-0.010; 0.002] 0.010 [0.004; 0.016] 0.002 [-0.005; 0.009]
Soil pH (intrasp) -0.005 [-0.011; 0.001] -0.007 [-0.013; -0.001] -0.001 [-0.007; 0.005] -0.005 [-0.012; 0.001]
Cat. ex. cap. (intrasp) 0.012 [0.007; 0.017] 0.003 [-0.003; 0.009] 0.006 [0.001; 0.011] -0.000 [-0.007; 0.006]
Temperature (species) 0.022 [0.010; 0.035] 0.013 [0.000; 0.025] 0.003 [-0.014; 0.020] -0.005 [-0.023; 0.013]
Water deficit (species) 0.038 [0.027; 0.048] 0.035 [0.024; 0.046] 0.044 [0.026; 0.062] 0.042 [0.027; 0.058]
Wind speed (species) -0.018 [-0.028; -0.009] -0.015 [-0.023; -0.006] -0.021 [-0.039; -0.004] -0.016 [-0.031; -0.001]
Sand fraction. (species) 0.005 [-0.005; 0.016] 0.002 [-0.009; 0.013] -0.004 [-0.021; 0.014] -0.007 [-0.025; 0.011]
Soil pH (species) -0.012 [-0.024; -0.000] -0.013 [-0.026; 0.000] -0.008 [-0.027; 0.010] -0.016 [-0.036; 0.004]
Cat. ex. cap. (species) 0.022 [0.010; 0.033] 0.002 [-0.009; 0.014] 0.015 [-0.003; 0.032] 0.001 [-0.016; 0.018]
Random effects Estimate Estimate Estimate Estimate
species 0.116 0.116 0.113 0.113
source 0.048 0.048 0.053 0.053
Temperature (intrasp) 0.067 0.068 0.063 0.064
Water deficit (intrasp) 0.052 0.048 0.044 0.048
Wind speed (intrasp) 0.020 0.026 0.028 0.028
Sand fraction. (intrasp) 0.047 0.054 0.036 0.042
Soil pH (intrasp) 0.051 0.045 0.034 0.039
Cat. ex. cap. (intrasp) 0.027 0.038 0.024 0.037
residual 0.063 0.064 0.055 0.055
Sampling size (N)
source 366 366 338 338
species 2160 2160 692 692
total 41879 41893 30128 30128

Table S11: Environmental predictors of wood density variation (Ime4). Same as Table S10, but using reduced

maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and not explicitly modelling

the residual distribution. Intervals are 95% confidence intervals (Wald method).
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M20: Tropical species

M21: Tropical species

M22: Extratropical species

M23: Extratropical species

brms/STAN CHELSA 1 km TerraClimate 5 km CHELSA 1 km TerraClimate 5 km
Wood density (g cm3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.528 [0.475; 0.582] 0.517 [0.467; 0.568] 0.569 [0.549; 0.588] 0.561 [0.540; 0.581]
Temperature (intrasp) 0.013 [-0.006; 0.032] -0.000 [-0.019; 0.018] 0.016 [0.002; 0.030] 0.006 [-0.009; 0.021]
Water deficit (intrasp) 0.012 [0.004; 0.021] 0.021 [0.008; 0.034] 0.001 [-0.007; 0.009] 0.011 [0.003; 0.020]
Wind speed (intrasp) -0.004 [-0.011; 0.003] -0.021 [-0.031; -0.011] 0.002 [-0.003; 0.007] 0.004 [-0.001; 0.010]
Sand fraction. (intrasp) 0.004 [-0.005; 0.014] -0.009 [-0.019; 0.001] 0.004 [0.001; 0.007] 0.002 [-0.001; 0.006]
Soil pH (intrasp) -0.013 [-0.021; -0.004] -0.012 [-0.023; -0.002] 0.001 [-0.004; 0.006] -0.004 [-0.009; 0.001]
Cat. ex. cap. (intrasp) 0.019 [0.010; 0.029] -0.003 [-0.014; 0.008] 0.001 [-0.004; 0.005] -0.002 [-0.008; 0.003]
Temperature (species) 0.022 [-0.030; 0.072] -0.010 [-0.056; 0.036] 0.043 [0.022; 0.064] 0.042 [0.020; 0.065]
Water deficit (species) 0.059 [0.038; 0.080] 0.078 [0.051; 0.104] 0.033 [0.009; 0.056] 0.027 [0.010; 0.045]
Wind speed (species) -0.033 [-0.056; -0.010] -0.049 [-0.068; -0.029] 0.001 [-0.018; 0.020] 0.015 [-0.004; 0.035]
Sand fraction. (species) 0.013 [-0.017; 0.042] -0.009 [-0.039; 0.022] -0.007 [-0.025; 0.011] -0.013 [-0.031; 0.005]
Soil pH (species) -0.031 [-0.055; -0.007] -0.048 [-0.079; -0.017] -0.015 [-0.041; 0.011] -0.010 [-0.033; 0.013]
Cat. ex. cap. (species) 0.027 [-0.001; 0.056] -0.021 [-0.051; 0.009] 0.008 [-0.009; 0.025] 0.003 [-0.014; 0.021]
Random effects Estimate Estimate Estimate Estimate

species 0.122 0.121 0.088 0.087

source 0.048 0.049 0.054 0.052

Temperature (intrasp) 0.049 0.049 0.065 0.075

Water deficit (intrasp) 0.038 0.044 0.037 0.034

Wind speed (intrasp) 0.012 0.029 0.020 0.023

Sand fraction. (intrasp) 0.044 0.051 0.010 0.011

Soil pH (intrasp) 0.043 0.043 0.020 0.018

Cat. ex. cap. (intrasp) 0.034 0.045 0.016 0.023

residual 0.085 0.085 0.049 0.049

log(o) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) -2.603 [-2.645; -2.561] -2.599 [-2.643; -2.557] -3.130 [-3.195; -3.068] -3.129 [-3.192; -3.065]
Random effects Estimate Estimate Estimate Estimate

species 0.437 0.442 0.415 0.416
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Sampling size (N)

source

species

total

140

700

8783

140

700

8783

253

247

26437

253

247

26439

Table S12: Environmental predictors of wood density variation, in and outside of tropics (brms). Same as Table

S10, but splitting the original data set into tropical species (>= 3 occurrences in the GWDD v.2 between 23.5 N

and 23.5 S) and extratropical species (>= 3 occurrences outside of 23.5 N and 23.5 S). Point estimates are

posterior means, intervals 95% credibility intervals. A visualization of effect sizes can be found in Figures S9-10.
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M20: Tropical species

M21: Tropical species

M22: Extratropical species

M23: Extratropical species

Ime4 CHELSA 1 km TerraClimate 5 km CHELSA 1 km TerraClimate 5 km
Wood density (g cm-3) Estimate cl Estimate cl Estimate cl Estimate cl
(Intercept) 0.520 [0.466; 0.574] 0.515 [0.464; 0.567] 0.568 [0.549; 0.588] 0.560 [0.540; 0.580]
Temperature (intrasp) 0.022 [0.002; 0.042] -0.003 [-0.022; 0.016] 0.017 [0.003; 0.030] 0.004 [-0.012; 0.019]
Water deficit (intrasp) 0.009 [0.001; 0.018] 0.020 [0.007; 0.033] 0.001 [-0.007; 0.009] 0.014 [0.006; 0.022]
Wind speed (intrasp) -0.001 [-0.008; 0.006] -0.017 [-0.027; -0.007] 0.002 [-0.002; 0.007] 0.005 [-0.001; 0.010]
Sand fraction. (intrasp) 0.005 [-0.005; 0.014] -0.009 [-0.019; 0.001] 0.004 [0.000; 0.007] 0.002 [-0.001; 0.005]
Soil pH (intrasp) -0.014 [-0.023; -0.006] -0.015 [-0.026; -0.004] 0.002 [-0.003; 0.007] -0.004 [-0.008; 0.000]
Cat. ex. cap. (intrasp) 0.021 [0.012; 0.030] -0.002 [-0.013; 0.009] 0.001 [-0.003; 0.005] -0.002 [-0.007; 0.004]
Temperature (species) 0.034 [-0.018; 0.085] -0.008 [-0.055; 0.039] 0.043 [0.023; 0.063] 0.042 [0.020; 0.064]
Water deficit (species) 0.059 [0.037; 0.080] 0.079 [0.052; 0.106] 0.035 [0.011; 0.059] 0.028 [0.011; 0.045]
Wind speed (species) -0.031 [-0.054; -0.007] -0.049 [-0.068; -0.029] 0.001 [-0.018; 0.020] 0.015 [-0.004; 0.034]
Sand fraction. (species) 0.015 [-0.016; 0.045] -0.007 [-0.037; 0.024] -0.006 [-0.023; 0.011] -0.012 [-0.030; 0.005]
Soil pH (species) -0.033 [-0.057; -0.009] -0.050 [-0.081; -0.019] -0.016 [-0.042; 0.010] -0.010 [-0.033; 0.012]
Cat. ex. cap. (species) 0.032 [0.003; 0.062] -0.018 [-0.048; 0.012] 0.011 [-0.007; 0.029] 0.004 [-0.013; 0.022]
Random effects Estimate Estimate Estimate Estimate

species 0.121 0.119 0.087 0.086

source 0.045 0.047 0.053 0.051

Temperature (intrasp) 0.030 0.029 0.059 0.074

Water deficit (intrasp) 0.037 0.041 0.036 0.032

Wind speed (intrasp) 0.013 0.020 0.019 0.020

Sand fraction. (intrasp) 0.043 0.050 0.012 0.010

Soil pH (intrasp) 0.037 0.037 0.018 0.014

Cat. ex. cap. (intrasp) 0.011 0.031 0.014 0.023

residual 0.092 0.093 0.050 0.050

Sampling size (N)

source 140 140 253 253

species 700 700 247 247

total 8783 8783 26437 26439

Table $13: Environmental predictors of wood density variation, in and outside of tropics (Ime4). Same as Table

$12, but using reduced maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and

not explicitly modelling the residual distribution. Intervals are 95% confidence intervals (Wald method).
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M24: Gymnosperms

M24: Gymnosperms

M25: Gymnosperms

M25: Gymnosperms

CHELSA 1 km CHELSA 1 km TerraClimate 5 km TerraClimate 5 km
(brms) (Ime4) (brms) (Ime4)

Wood density (g cm3) Estimate cl Estimate cl Estimate Cl Estimate cl
(Intercept) 0.476 [0.452; 0.499] 0.477 [0.457; 0.497] 0.471 [0.447; 0.494] 0.469 [0.449; 0.489]
Temperature (intrasp) 0.021 [-0.008; 0.047] 0.035 [0.013; 0.057] -0.001 [-0.042; 0.036] -0.011 [-0.052; 0.030]
Water deficit (intrasp) -0.008 [-0.025; 0.009] -0.011 [-0.028; 0.005] 0.014 [-0.008; 0.036] 0.022 [0.005; 0.040]
Wind speed (intrasp) 0.010 [0.002; 0.021] 0.013 [0.004; 0.022] 0.006 [-0.005; 0.018] 0.006 [-0.004; 0.016]
Sand fraction. (intrasp) 0.000 [-0.007; 0.007] -0.003 [-0.011; 0.004] 0.002 [-0.006; 0.009] 0.001 [-0.007; 0.008]
Soil pH (intrasp) -0.010 [-0.022; 0.002] -0.012 [-0.021; -0.003] -0.015 [-0.027; -0.005] -0.015 [-0.022; -0.007]
Cat. ex. cap. (intrasp) 0.005 [-0.005; 0.015] 0.003 [-0.006; 0.012] 0.002 [-0.007; 0.012] 0.003 [-0.007; 0.012]
Temperature (species) 0.004 [-0.019; 0.029] -0.002 [-0.022; 0.019] -0.006 [-0.032; 0.021] -0.000 [-0.022; 0.021]
Water deficit (species) 0.034 [-0.001; 0.068] 0.041 [0.013; 0.068] 0.041 [0.008; 0.073] 0.036 [0.009; 0.064]
Wind speed (species) -0.012 [-0.039; 0.015] -0.016 [-0.038; 0.007] -0.003 [-0.026; 0.020] 0.007 [-0.012; 0.027]
Sand fraction. (species) -0.002 [-0.028; 0.023] -0.015 [-0.031; 0.001] 0.005 [-0.018; 0.028] 0.004 [-0.014; 0.023]
Soil pH (species) -0.005 [-0.035; 0.025] -0.013 [-0.034; 0.009] -0.006 [-0.037; 0.025] -0.002 [-0.026; 0.022]
Cat. ex. cap. (species) -0.001 [-0.027; 0.024] -0.006 [-0.025; 0.014] -0.010 [-0.035; 0.014] -0.009 [-0.027; 0.010]
Random effects Estimate Estimate Estimate Estimate
species 0.052 0.049 0.050 0.049
source 0.053 0.054 0.052 0.052
Temperature (intrasp) 0.051 0.046 0.087 0.106
Water deficit (intrasp) 0.033 0.036 0.038 0.043
Wind speed (intrasp) 0.016 0.023 0.018 0.022
Sand fraction. (intrasp) 0.012 0.015 0.012 0.015
Soil pH (intrasp) 0.020 0.021 0.017 0.012
Cat. ex. cap. (intrasp) 0.015 0.020 0.014 0.019
residual 0.050 0.050 0.050 0.051
log(o) Estimate cl Estimate cl
(Intercept) -3.041 [-3.166; -2.920] -3.031 [-3.155; -2.905]
Random effects Estimate Estimate
species 0.417 0.424
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Sampling size (N)

source

species

total

159 159 159 159
59 59 59 59
12089 12089 12089 12089

Table S14: Environmental predictors of wood density variation in gymnosperms (brms + Ime4). Same as Tables
$10-13, but with predictions only for gymnosperms. Shown are both models fits with the brms package and with
Ime4. Intervals are 95% credibility/confidence intervals (Wald method for ML estimates). Note how most effects

are weak and overlap with 0. A visualization of effect sizes can be found in Figure S11.
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M20: Tropical species

M21: Tropical species

M22: Extratropical species

M23: Extratropical species

brms/STAN CHELSA 1 km TerraClimate 5 km CHELSA 1 km TerraClimate 5 km
Wood density (g cm3) Estimate Estimate Estimate Estimate Estimate Estimate Estimate Estimate
(original) (rescaled) (original) (rescaled) (original) (rescaled) (original) (rescaled)
Temperature (intrasp) 0.014 0.003 0.001 0.000 0.017 0.005 0.006 0.002
Water deficit (intrasp) 0.012 0.008 0.021 0.010 0.001 0.000 0.012 0.005
Wind speed (intrasp) -0.003 -0.002 -0.020 -0.009 0.002 0.001 0.004 0.002
Sand fraction. (intrasp) 0.005 0.002 -0.008 -0.003 0.004 0.003 0.002 0.002
Soil pH (intrasp) -0.012 -0.006 -0.012 -0.006 0.001 0.001 -0.004 -0.002
Cat. ex. cap. (intrasp) 0.019 0.008 -0.003 -0.001 0.001 0.001 -0.002 -0.001
Temperature (species) 0.030 0.033 -0.004 -0.005 0.045 0.041 0.045 0.041
Water deficit (species) 0.057 0.049 0.078 0.055 0.032 0.024 0.026 0.023
Wind speed (species) -0.031 -0.029 -0.047 -0.053 0.003 0.002 0.016 0.011
Sand fraction. (species) 0.017 0.009 -0.005 -0.003 -0.006 -0.005 -0.012 -0.009
Soil pH (species) -0.031 -0.024 -0.048 -0.037 -0.014 -0.012 -0.009 -0.007
Cat. ex. cap. (species) 0.031 0.020 -0.017 -0.011 0.009 0.008 0.004 0.004

Table S15: Rescaled environmental effect sizes, in and outside of tropics (brms). Same as fixed effects shown

in Table S12, but extended to include separately rescaled estimates of within-species and among-species effects.

Rescaling was carried out by calculating average within-species and among-species standard deviations for each

predictor and then multiplying effect sizes with these standard deviations. The rescaled effect sizes thus

correspond to the effect sizes one might observe across a species actual range.

47




Database samples for | RMSE

Method prediction | (gcm?) R Nupecies

0/ genus 0.083 0.640 1557

Wood density means 1 0.084 0.730 1667

2 0.056 0.860 1667

0/ genus 0.071 0.710 1557

GWDD v.2 M26: Hierarchical model 1 0.053 0.840 1667

2 0.043 0.900 1667

0/ genus 0.060 0.730 1557

M27: Hierarchical model

branch & trunk 1 0.046 0.840 1667

2 0.038 0.900 1667

0/ genus 0.098 0.620 1447
GWDD v.1 Wood density means 1 0.095 0.740 1580

2 0.069 0.840 1312

Table S16: Quality of wood density predictions at the species level. Shown is to what extent the wood density
of 1,667 species (all well-sampled in the GWDD v.2, with records from >=5 sources) can be estimated when only
a limited number of wood density measurements are available (0, 1 or 2). The baseline approach is to estimate
species-level wood density from simple wood density means, either at genus level (0 samples) or averaging
across the provided 1-2 samples. Shown are also two alternative hierarchical modelling approaches: M26, which
is a simple random effects model, with a nested taxonomic structure plus extra random effects for study and
measurement location (cf. Table S3), as well as M27, which extends M26 with a fixed effect for the trunkwood-
branchwood distinction. Both models were refitted three times for each species, using both the local species-
specific samples (0, 1, 2) and the remainder of the GWDD v.2. To reduce the computational burden, we used
only the Ime4 package. Summary statistics of predictive power are the mean absolute error (MAE, g cm-3), root
mean square error (RMSE, g cm=3) and R?, calculated with reference to estimates based on a full set of
measurements (>= 5 sources). A comparison with the GWDD v.1 is provided for completeness, again taking the
GWDD v.2 values as reference. We note that in some cases, species were either not available for prediction (i.e.,
not recorded in GWDD v.1), or were the sole species in their genus, which also removed them from predictions

at genus level.
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RMSE (g cm3) R?
Number of local samples Number of local samples

Model Extent 0 1 2 3 0 1 2 3

Global 0.089 0.088 0.087 0.086 0.690 0.700 0.710 0.710
Species means Study 0.093 0.091 0.087 0.086 0.660 0.680 0.710 0.710

Local 0.107  0.085 0.082 0.590 0.720 0.740

M26: Hierarchical model Global 0.088 0.086  0.085 0.084 0.700 0.710 0.720 0.730

M27: Hierarchical model

Global 0.087 0.086 0.084 0.083 0.710 0.710 0.730 0.730
(branch & trunk)

Table S17: Quality of wood density predictions at the individual plant level. Shown is the predictive power of
the same models as in Table S16, but now applied to predict individual-level wood density and tested at well-
sampled sites from well-sampled studies (only species and studies with >= 3 locations per study and >= 4
measurements per site, Nspecies = 318). For each approach, we show how well it is able to predict an individual
wood density measurement when 0, 1, 2, or 3 measurements from the same locality and the same study
(identical measurement methodology) are available. The baseline is provided by simple species means,
calculated in three ways: 1/ using a combination of the 0, 1, 2, or 3 local samples and all measurements from
elsewhere in the GWDD v.2 (“Global”), 2/ using a combination of the 0, 1, 2, or 3 local samples and all samples
measured as part of the same study (“Study”), or 3/ using only the 0, 1, 2, or 3 local samples (“Local”). This is
compared to two hierarchical modelling approaches (M26, M27) that model wood density with a nested
taxonomic hierarchy as well as crossed random effects for study methodology and study site, thus implicitly
adjusting predictions for methodological biases and local wood density shifts. Note that, assuming that within-
species wood density variation is distributed with sd = 0.068 g cm-3, we would expect an RMSE = 0.096 g cm3,
i.e., sqrt(2 * 0.0682) when predicting a single tree’s wood density from another tree with no other knowledge
about measurement location or the type of tissue sampled. The hierarchical models clearly outperform this

expectation (RMSE = 0.086 g cm-3).
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C) Figures

M1: Variation across taxonomic levels MS5: Intersite and interindividual variation

a b

—_

M9: Heartwood-sapwood variation M16: Environment-dependent variation

6+ d

Density

Yrep

0.0 05 10 0.0 05 1.0
. -3
Wood density (g cm™)

Fig. S1: Sample posterior predictive checks. Shown are posterior predictive checks for four of the models
described in Table S3, using the default pp_check() function from the package brms. The black lines describe the
distribution of wood density values for each of the Global Wood Density Database (GWDD) v.2 subsets used in
models M1, M5, M9 and M16, the blue lines describe the modelled posterior densities from 10 random posterior
draws. All model fits successfully reproduced the data distribution, with no deviations in models M1 and M16
(panels a, d), a negligible underestimation of the mode in model M5 (panel c) and some uncertainty, though no

bias, in model M9 (panel c).
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family |
n =249
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A

n = 2576

species |
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intraspecific + error | ————c@———
n = 79469
methodology | ———
n =293
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Fig. S2: Variance components estimated from a Bayesian hierarchical model. Shown are the different variance
components as estimated from a Bayesian hierarchical model (M1 in Table S3). Shown are the nested random
effects at family, genus and species level, as well as residual variation (intraspecific variation + error). We
explicitly modelled residual variance to assess the consistency of intraspecific variation, and also included a
crossed random effect for methodology (i.e., the study where values were obtained from). The figure shows that
variation at family and genus level is much larger than species-level or intraspecific variation, and that these are
again larger than methodological effects. Note that the residuals (intraspecific variation + error) are
overdispersed compared to a normal distribution, with a large number of outliers. Throughout, black dots

indicate the median effect size and black intervals quantile ranges (66% and 95%).
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Fig. S3: Intraspecific variation in selected species from six plant families. Shown are estimated intraspecific

wood density distributions for selected taxa, based on predictions from model M1 (Table S3). All values are based

on wood density residuals, but have been corrected for methodological biases by subtracting study effects (cf.

Fig. S2 and Table S4). Throughout, black dots indicate the median effect size and black intervals quantile ranges

(66% and 95%). Sample size (n) is provided for each species.
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Fig. S4: Consistency of the extent of intraspecific variation across taxa. Shown is the distribution of empirical
within-species standard deviations (sd) of wood density across all species with more than one plant-level record
(3, Nspecies = 6,361), as well as the distribution of inferred standard deviations (or o) across the same species (b).
The black dot indicates the median, the black intervals the corresponding quantile ranges (66% and 95%). Note
that both follow approximately lognormal distributions, but the empirical standard deviations have a wider
distribution. This is expected, as they include many species with low sample sizes (e.g. 2-3 measurements), which

the modelled distribution corrects for.
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Fig. S5: Wood density variation between trunkwood and branchwood, high quality regressions. Shown is the
same graph as in Fig. 3 (panels b and c), but for a subset of records where branch and trunk samples have been
taken from the same individuals. Panel a) shows species mean values for both trunkwood and branchwood,
panel b) shows each plant’s mean trunkwood density and mean branchwood density. Blue lines are Major Axis
regression lines, dashed lines the 95% Cl. Note how the convergence observed in panel a) and in Fig. 3 disappears

in panel b).
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Fig. S6: Wood density variation in trunkwood and in branchwood in selected species. Shown are distributions
of within-species variation in wood density for sample species from four families, split by within-tree location of
samples (trunkwood or branchwood). Families and species were chosen to maximize sampling size. Black dots
indicate the median effect size and black intervals quantile ranges (66% and 95%). Note how there is no clear

clear convergence (i.e., branchwood distributions being closer to each other), nor a simple predictive pattern.
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Fig. S7: Environmental and edaphic effects on wood density. Panels a) and b) are equivalent to panels a) and b)
in Fig. 4 in the main text and show global within-species and between-species effects of environmental variables
on wood density. Effects are derived from a Bayesian hierarchical model, with all predictors scaled by one
standard deviation. Climatic variables were from CHELSA/BIOCIM+ (Karger et al., 2017; Brun et al., 2022), edaphic
variables from soilgrids (Hengl et al., 2017). X-axis limits were chosen wider than in the main text for
comparability with effect sizes in data subsets (cf. Fig. S9). Panels c) and d) are the equivalents of panels a) and
b), but using the TerraClimate (Abatzoglou et al., 2018) climatology 1981-2010. Variables are mean annual
temperature (“Temperature”, in °C), climatic water deficit (“Water deficit”, in mm), and mean wind speed (“Wind
speed”, ms). The soilgrids layers are the same, but have been extracted at 5 km to match the 4-5 km resolution
of TerraClimate. The corresponding model results can be found in Table S10. Throughout, black dots indicate the

median effect size and black intervals quantile ranges (66% and 95%).
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Fig. S8: Environmental and edaphic effects on wood density, high-quality subset. Same as Fig. S7, but for a

higher-quality subset of the GWDD v.2 where each species varied strongly in at least environmental variable.

This meant that a species was only included if the range of at least one of the environmental predictors was in

the top 10% of ranges for that predictor among all other species. We note that this may slightly bias the data set

towards the better-sampled higher latitude regions. The corresponding model results can be found in Table S10.

Throughout, black dots indicate the median effect size and black intervals quantile ranges (66% and 95%).
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Fig. S9: Environmental and edaphic effects on wood density, within tropics. Same as Fig.S7-8, but for a subset
of species with at least three locations in the tropics. Locations were defined as distinct 5 km grid cells. The
corresponding model results can be found in Table S12. Throughout, black dots indicate the median effect size

and black intervals quantile ranges (66% and 95%).

58



a b

Temperature 4 - ——
=l
£ Wwater deficit 4 L 3 — P
e
©
=
§ Wind speed 4 ® ——
£
NE
< Sand fraction 4 r ——
(9p]
i |
L
I
O Soil pH A —ﬁ—

Cation exch. | —e

capacity
c d

Temperature —o— —ef——
=l
L
8 Water deficit - e 2 ——
[
5
E Wind speed 4 2 T
x
0
2
@© Sand fraction 4 [ ] — @
£
&)}
©
> Soil pH 4 T —
'_

Cation exch. |

capacity T r
0.1 0.0 0.1 0.1 0.0 0.1
Within-species effect (g cm's) Between-species effect (g Cm“a)

Fig. S10: Environmental and edaphic effects on wood density, outside of tropics. Same as Fig.57-9, but for a
subset of species with at least three locations outside of the tropics. Locations were defined as distinct 5 km grid
cells. The corresponding model results can be found in Table S12. Throughout, black dots indicate the median

effect size and black intervals quantile ranges (66% and 95%).
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Fig. S11: Correlation between within-species effects and between-species effects. Shown are correlations
between estimated within-species and between-species effects of environmental and edaphic predictors on
wood density variation. Every point represents an estimated effect of one predictor from one of the 8 models
we used (Table S3, Tables S10-13) and counting Bayesian and ML models separately (96 estimates overall). The
overall correlation is r = 0.83. Note that this correlation between within-species and between-species effects is
not due to correlation between environmental predictors within and across species, as these are decoupled by

construction and also have strikingly different correlation structures (Fig. S17).
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Fig. S12: Environmental and edaphic effects on wood density in gymnosperms. Same as Fig.5S7-10, but for
gymnosperms only. The corresponding model results can be found in Table S15. Throughout, black dots indicate
the median effect size and black intervals quantile ranges (66% and 95%). Note how most effects are close to 0

or strongly overlap with 0.
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Fig. S13: Temperature effects on within-species wood density variation, examples. Shown are the within-
species effects of temperature variation on wood density in four temperate species that cover large
environmental gradients and are well-sampled (several studies or large sample sizes). Each line represents a
different study and is fitted via simple OLS regression. Note how wood density increases slightly with
temperature, but how this effect is overwhelmed by variation around the regression line and even differs
between studies. Temperatures are based on the CHELSA/BIOCLIM+ data set (Karger et al., 2017; Brun et al.,
2022).
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Fig. S14: Water deficit effects on within-species wood density variation, examples. Same as Fig. S11, but for
water deficit. Shown are the within-species effects of water deficit on wood density in four tropical species that
cover large environmental gradients and are well-sampled (two different studies for each). Each line represents
a different study and is fitted via simple OLS regression. Note how there is no clear overall effect and how effect
sizes are weak even across large gradients. Water deficits are based on the CHELSA/BIOCLIM+ data set (Karger

etal.,, 2017; Brun et al., 2022).
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Fig. S15: Intraspecific effects of climatic water deficit on wood density. Enlarged panel from Fig. 4a in main text,
with species labels superimposed on regression lines for improved accessibility. Shown are the mean intraspecific
effect of climatic water deficit on wood density, as estimated from a hierarchical model (M16) and a large set of
geolocated wood density records (dashed black slope, ngpecies = 2,160) as well as species-specific slopes and raw
data for 19 species that cover a wide geographic and wood density range (in colour, n = 3,224, > 20 samples per

species).
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Fig. S16: Intraspecific effects of mean annual temperature on wood density. Enlarged panel from Fig. 4b in main
text, with species labels superimposed on regression lines for improved accessibility. Shown are the mean
intraspecific effect of mean annual temperature on wood density, as estimated from a hierarchical model (M16)
and a large set of geolocated wood density records (dashed black slope, nepecies = 2,160), as well as species-specific
slopes and raw data for 19 species that cover a wide geographic and wood density range (in colour, n = 3,224, >

20 samples per species).
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Fig. S17: Correlation between environmental and edaphic predictors. Shown are the correlations between
environmental and edaphic predictors matched to the Global Wood Density Database (GWDD) v.2. All predictors
are separated into species mean values, summarizing the typical environment a species experiences (“species”
in brackets), and deviations from the species means at the individual level, i.e., indicating within-species
environmental variation (“intrasp” in brackets). Correlation matrices are shown for both sets of predictors used
throughout the study, i.e. the CHELSA climatologies 1981-2010 (Brun et al., 2022; Karger et al., 2017) in
conjunction with 1 km gridded soilgrids layers (Hengl et al., 2017), as well as TerraClimate climatologies 1981-
2010 (Abatzoglou et al., 2018) in conjunction with 5 km gridded soilgrids layers. Note that, by construction,
species means are fully decorrelated from within-species deviations from the species means (r < 0.01), hence
large parts of the correlation matrices appear empty. Also note that, at species level, temperature is correlated
in excess of |r| = 0.7 with one variable (cation exchange capacity) and has an absolute correlation of ~0.7 with
one other variable (wind speed). Since we are predominately interested in within-species effects and not in
exactly partitioning out species-level effects, we include all three variables in the model. A high absolute

correlation, but below 0.7, also exists between soil pH and water deficit.
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