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A) Methods

Methods S1: Updating the first GWDD 

Correcting inconsistencies 

Entries in the first GWDD were updated to reflect structural changes in the GWDD v.2. In the 

case of large collections that had previously been transformed – through conversion factors 

or aggregation – or updated with new records since the publication of the first GWDD (Ilic et 

al., 2000; Langbour et al., 2019; Vieilledent et al., 2018), we reintegrated the entire data sets 

from scratch to ensure consistency. Where possible, this was done at the level of individual 

plants instead of species means. If published manuals were based on or overlapped with 

databases, but provided values for additional species from other sources (e.g., Détienne & 

Jacquet, 1983 and Langbour et al., 2019), we first included the raw values from the databases 

and then reincluded any non-matching taxa from the published literature to ensure 

continuity. All values were transformed with the new correction factors. Where re-integration 

would have been highly time-consuming or near-impossible (values from hard-to-access print-

only manuals such as Desch, 1941, or previous compilations, such as Reyes et al., 1992), we 

inferred the source value by back-transforming entries with the original wood density 

conversion factor and reapplying a corrected factor. In this case, the taxon identifier from the 

original database was kept as species_reference and the column backtransformed is ticked. In 

a few cases, sources in the first GWDD could not be accessed anymore (Database of Brazilian 

Woods 2006, formerly: http://www.ibama.gov.br/lpf/madeira/default.htm) or have been 

overwritten in the meantime (ICRAF database, http://db.worldagroforestry.org/wd). Records 

exclusively attributed to these sources were removed (50 taxa in total, 1 lost genus, Table S2). 

Database extension 
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In addition to updating the previous database, we searched the literature for new or 

previously overlooked studies and extracted values either manually or from supplementary 

files. To cover a wide range of trait values, we also wrote to authors of papers citing the 

original GWDD paper (Chave et al., 2009) and asked them whether they would be willing to 

participate in our effort, yielding more than 70 contributors (co-authors on this paper). While 

not a primary aim, we also received data for a range of wood density types outside of the 

scope of the first GWDD. For some tissue types (e.g., “bark” in type_tissue) and within-plant 

locations (“root” in location_sample), we included these values, as they are directly linked to 

intraspecific variation and form already part of some wood density assessments (e.g., bark is 

not always removed before estimating wood density). However, we decided not to include 

quantities such as green wood density (Niklas & Spatz, 2010) or dry mass fraction (Goodman 

et al., 2013), as there is no clear conversion to wood specific gravity. A complete list of 

literature references for wood density values can be found in Methods S2. 
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Methods S2: Literature references for wood density values 

Below we provide all the sources of data for the GWDD v.2, and the number of records from 

these sources. Note that these records also include bark density measurements. 

Source N

A.T.I.B.S. 1975. Nomenclature Generale des Bois Tropicaux. Nogent-sur-Marne, France. 186

Acevedo Mallque, M. and Kikata, Y. 1994. Atlas of Peruvian Woods. Universidad Nacional Agraria, La Molina, Peru and Nagoya University, Japan. 202 pp. 11

Ackerly, D.D. 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 74:25-44. 20

Aguilar-Rodríguez et al. 2001: Comparación de la gravedad específica y características anatómicas de la madera de dos comunidades vegetales en México. Anales del Instituto de Biología. 

Universidad Nacional Autónoma de México. Serie Botánica 72, 171-185.

54

Aiba, M., & Nakashizuka, T. (2009). Architectural differences associated with adult stature and wood density in 30 temperate tree species. Functional Ecology, 23(2), 265-273. 30

Aiba, M., Kurokawa, H., Onoda, Y., Oguro, M., Nakashizuka, T., & Masaki, T. (2016). Context-dependent changes in the functional composition of tree communities along successional 

gradients after land-use change. Journal of Ecology, 104(5), 1347-1356. + unpublished data

200

Alden, H. 1995. Hardwoods of North America. United States Department of Agriculture, Forest Service, Forest Products Laboratory. Gen. Tech. Report FPL-GTR-83. 136 pp. 

http://www2.fpl.fs.fed.us/TechSheets/hardwood.html. From Wiemann database

96

Alden, H. 1997. Softwoods of North America. United States Department of Agriculture, Forest Service, Forest Products Laboratory. Gen. Tech. Report FPL-GTR-102. 151 pp. 

http://www2.fpl.fs.fed.us/TechSheets/softwood.html. From Wiemann database

51

Alfaro-Sánchez et al. 2020. How do social status and tree architecture influence radial growth, wood density and drought response in spontaneously established oak forests? Annals of 

Forest Science 77, 49.

591

Alston, A.S. 1982. Timbers of Fiji: Properties and Potential Uses. Department of Forestry, Suva, Fiji. 183 pp. 40

Altamirano, V., and Rico, R.L. 1992. Maderas de Bolivia: Caracteristicas y Usos de 55 Maderas Tropicales. Camara Nacional Forestal, Santa Cruz, Bolivia. 8

Alvarez et al. 2012. Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management 267, 297–308. 257

Alvarez et al. 2013. Densidad básica del fuste de árboles del bosque seco en la costa Caribe de Colombia. Rev. Intropica 8, 17-28. 124

Alves, LF and Oliveira, AA (2010) Assessment of aboveground forest carbon pools of a tropical moist forest (Ilha do Cardoso, Brazil). Smithsonian Tropical Research Institute, Center for 

Tropical Forest Science. Final Report

20

Amaro, M.A. 2010. Quantificação do estoque de volume, biomassa e carbono em uma Floresta Estacional Semidecidual Montana em Viçosa, MG. Tese (doutorado). Universidade Federal 

de Viçosa, Viçosa. 168p.; Amaro, M.A., Soares, C.P.B., Souza, A.L.D., Leite, H.G., & Silva, G.F.D. 2013. Volume, biomass and carbon stocks in a seasonal semideciduous forest in viçosa, 

minas gerais state. Revista Árvore, 37(5), 849-857.

28

Amorim, L.C. 1991. Variação da densidade basica no sentido radial em madeiras tropicais da Amazônia. Relatorio final Periodo abril 90: março 91. INPA, Manaus, AM 24 pp. In 

Fearnside, P. M. 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90: 59-87.

1

Anderegg et al. 2021. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees. New Phytologist 229(3), 1375-1387. 

doi:10.1111/nph.16795

1603

Anonymous 1981. Mengenal Sifat-sifat Kayu Indonesia dan Penggunaannya. Penerbit Kanisius. ISBN 979-413-106-7. 115

Anonymous. 1971. Inventaire Forestier des Terres Basses du Versant Occidental des Monts Cardamones CAMBOOGE. Confidential FAO Technical Report No. 6, FO:SF/CAM 6., Rome, 

Italy. Reported as air-dry density in Miller-Ilic database

128

Anonymous. 1974. Standard Nomenclature of Forest Plants, Burma, including commercial timbers. Forest Research and Training Circle, Forest Department, Burma. 121 pp. . Reported as 

air-dry density in Miller-Ilic database

233

Anonymous. 1979. La Amazonia Colombiana y sus recursos. Proyecto Radargrametrico de Amazonas. IGAC, Bogota. By H ter Steege. 68

Anonymous. 1990. Nomenclature of Commercial timbers, including sources of supply. (Revision of BS 881 and 589: 1974). British Standards Association, London, England. 4

Anufrieva 1976, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 3

Apgaua DMG, Ishida FY, Tng DYP, Laidlaw MJ, Santos RM, Rumman R, Eamus D, Holtum JAM, Laurance SGW (2015) Functional traits and water transport strategies in lowland 

tropical rainforest trees. PLoS ONE 10, e0130799.

8

Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ, Laurance SGW (2017) Plant functional groups within a tropical forest exhibit different wood functional 

anatomy. Functional Ecology 31, 582-591.

82

Arcanjo, Fátima; Bordignon, Alexandre; Torezan, José Marcelo; Miranda, Carmem (2016).  Field data. Source: ARCANJO, Fátima Aparecida. Biomass in semideciduous Atlantic Forest 

fragments and restoration sites. 2017.89. Dissertation (Master in Biological Sciences) – State University of Londrina, 2017.

75

Arostegui V., A. 1976. Características Tecnológicas y Usos de la Madera de 145 Especies del País. 483 pp. 12

Arostegui, A. and Sobral Filho, M. 1986. Usos de las maderas del bosque humedo tropical Colonia Angamos Rio Yavari y Jenaro Herrera, Investigaciones Tecnologicas 1:2, Instituto de 

Investigaciones de la Amazonia Peruana, Iquitos By T Baker.

4

Arostegui, A. and Valderamma, F. 1986. Usos de las maderas del bosque humedo tropical Allpahuayo-Iquitos. Investigaciones Tecnologicas 1:5, Instituto de Investigaciones de la 

Amazonia Peruana, Iquitos By T Baker.

11

Askarov 1974; Malenko et al. 2015, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 37

Asner et al. 2011. High-resolution carbon mapping on the million-hectare Island of Hawaii. Frontiers in Ecology and the Environment 9(8), 434–439. doi:10.1890/100179. Obtained from 

Appendix in Flint et al. 2014.

30

Asrat et al. 2020. Modelling and quantifying tree biometric properties of dry Afromontane forests of south-central Ethiopia. Trees 34, 1411–1426. 60

http://www2.fpl.fs.fed.us/TechSheets/hardwood.html
http://www2.fpl.fs.fed.us/TechSheets/softwood.html
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Auburn_Silviculture, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, 

Christensen GA, (eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific 

Northwest Research Station, GTR-PNW-931, Portland, OR, pp. 25–30.

140

Auclair Metayer 1980, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 1

B Davis 1994. Wood densities for fifty-two Australian tree species. CSIROIn: Ilic, J., Boland, D., McDonald, M., Downes, G. and Blakemore,  P. 2000. Woody density phase 1. State of 

knowledge. National carbon accounting system. Technical Report 18 Australian Greenhouse Office, Canberra, Australia.

61

Baldwin 1987, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, Christensen GA, 

(eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific Northwest Research 

Station, GTR-PNW-931, Portland, OR, pp. 25–30.

260

Baldwin_and_Saucier, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, 

Christensen GA, (eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific 

Northwest Research Station, GTR-PNW-931, Portland, OR, pp. 25–30.

452

Baldwin_et_al_2000, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, 

Christensen GA, (eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific 

Northwest Research Station, GTR-PNW-931, Portland, OR, pp. 25–30.

214

Baldwin_et_al, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, Christensen 

GA, (eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific Northwest 

Research Station, GTR-PNW-931, Portland, OR, pp. 25–30.

34

Barajas-Morales, J. 1987, Wood specific gravity in species from two tropical forests in México. International Association of Wood Anatomists Bulletin, 8, 143-Ј148. 212

Barbosa, R.I. and Ferreirea, C.A.C. 2004. Densidade basica da madeira de um ecossistema de 'campina' em Roraima, Amazonia Brasileira. Acta Amazonica 34: 587-591. 30

Barnard D.M., Meinzer F.C., Lachenbruch B., McCulloh K.A., Johnson D.M., Woodruff D.R. 2011. Climate-related trends in sapwood biophysical properties in two conifers: avoidance 

of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant, Cell and Environment 34:643-54.

4

Bencat 1989, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 18

Bencat 1990, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 1

Bendtsen, B A. and Chudnoff, M. 1981. Properties of Seven Colombian Woods. Research Note FPL-0242. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 12 

pp.

3

Benthall, A.P. 1984. The Trees of Calcutta: And its Neighborhood. Thacker Spink and Co. Ltd. Calcutta India. 136

Berner, L. T., & Law, B. E. (2015). Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosciences, 12(22), 

6617.

3

Bhaskar, R. A. Valiente-Banuet, D.D. Ackerly. 2007. Evolution of hydraulic traits in closely related species pairs from mediterranean and non-mediterranean environments of North 

America. New Phytologist 176: 718-26.

12

Bhatt et al. 2017. Fuelwood characteristics of important trees and shrubs of Eastern Himalaya, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 39(1), 47-50. 24

Blakemore P. 2003. Density and Shrinkage of four low rainfall plantation grown eucalypts. CSIROIn: Ilic, J., Boland, D., McDonald, M., Downes, G. and Blakemore,  P. 2000. Woody 

density phase 1. State of knowledge. National carbon accounting system. Technical Report 18 Australian Greenhouse Office, Canberra, Australia.

4

Boanerges Souza 2014. EFEITOS DO SOLO E NÍVEL DO LENÇOL FREÁTICO SOBRE A VARIAÇÃO DA GRAVIDADE ESPECÍFICA DA MADEIRA EM MESOESCALA NO NORTE 

DA AMAZÔNIA. Dissertation, INPA, Manaus, Amazonas.

169

Bolza E and Kloot N. H. 1963. The mechanical properties of 174 Australian Timbers. CSIROIn: Ilic, J., Boland, D., McDonald, M., Downes, G. and Blakemore,  P. 2000. Woody density 

phase 1. State of knowledge. National carbon accounting system. Technical Report 18 Australian Greenhouse Office, Canberra, Australia.

205

Bolza, E. 1975. Properties and uses from 175 timber species from Papua New Guinea and West Irian. C.S.I.R.O. Division of Building Research Report 34. 232

Bondarenko 1970, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 8

Brink and Achigan-Dako 2012. Plant Resources of Tropical Africa 16. Fibres. Wageningen. 1

Brodribb T.J. & Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant physiology 149:575-84. 6

Brooks_et_al, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, Christensen GA, 

(eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific Northwest Research 

Station, GTR-PNW-931, Portland, OR, pp. 25–30.

84

Broshtilova 1983, Schepaschenko et al. (2017) Sci. Data 4:170070. DOI: 10.1038/sdata.2017.70 6

Brzeziecki, B. and Kienast, F. 1994. Classifying the life-history strategies of trees on the basis of the Grimian model. Forest Ecology and Management 69: 167-187. 34

Bucci S., Scholz F.G., Peschiutta M.L., Arias M.S., Meinzer F.C., Goldstein G. 2013. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is 

additionally protected from drought-induced embolism by leaves and roots. Plant, Cell and Environment 36: 2163-2174.

14

Bucci S.J. Scholz F.G., Goldstein G and Meinzer F.C.  2009. Soil water availability as determinant of the hydraulic architecture in Patagonian woody species. Oecologia  DOI 

10.1007/s00442-009-1331-z.

7

Bucci S.J., Goldstein G., Meinzer F.C., Scholz F.G., Franco A.C. and Bustamante M.  2004.. Functional convergence in hydraulic architecture and water relations of savanna trees: from 

leaf to whole plant. Tree Physiology 24: 891-899.

2

Bucci, S.J., Scholz F.G., Goldstein G., Meinzer F.C., Franco, A.C., Campanello, P.I., Villalobos-Vega, R., Bustamante, M. and Miralles-Wilhelm, F. 2006. Nutrient availability constrains 

the hydraulic architecture and water relations of savanna trees. Plant Cell and Environment 29: 2153-2167

20

Bucci, S.J., Scholz, F.G., Campanello, L.M., Montti, L., Jimenez-Castillo, M., Rockwell, F.A., La Manna, L., Guerra, P. Bernal, P.L., Troncoso,

O. Enricci, J., Holbrook M.N. and Goldstein G. 2012. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem 

functionality? Tree Physiology 32:880-893, doi: 10.1093/treephys/tps054

9

Buckeye_Cell_Slash, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, 

Christensen GA, (eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific 

Northwest Research Station, GTR-PNW-931, Portland, OR, pp. 25–30.

160

Buckeye_Planted_Slash, from: Radtke et al. 2016. LegacyTreeData: A national database of detailed tree measurements for volume, weight, and physical properties. In: Stanton SM, 

Christensen GA, (eds). Proceedings of Forest Inventory and Analysis 2015 Science Symposium, December 8–10, 2015, Portland, OR. GTR-PNW-931, USDA Forest Service, Pacific 
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Methods S3: Converting air- and ovendry density to basic wood density 

For air- and ovendry wood densities robust conversion factors to basic density can be derived 

(Vieilledent et al., 2018). The theory behind the conversion factors is as follows: wood is 

composed of a variable fraction of water, some of which is free to move in conduits (tracheids 

and vessels), and the rest is associated with other wood tissues including parenchyma and 

fibers. During drying, free water is gradually lost, until reaching the so-called fiber saturation 

point. The moisture at fiber saturation is quite variable across species from ca 10% to 50%, 

with a typical value of ~30% (Berry & Roderick, 2005; Vieilledent et al., 2018). Beyond this 

point, any further drying also shrinks the volume. If Vs is the volume of the sample at fiber 

saturation moisture S, and V0 is the volume when the sample has lost all of its water, then the 

volumetric shrinkage, or retractability, is the percent loss in volume R = (Vs-V0)/Vs x 100, which 

varies from 5% to 25% across species (Vieilledent et al., 2018).  

From these values, it is possible to derive a conversion formula between wood density 

at any moisture content w (Dw) and basic density (Db): 

𝐷𝑏 =  
1 − (𝑅 100⁄ ) × (𝑆 − 𝑤)

1 + 𝑤/100
 ×  𝐷𝑤 

This formula has been used together with the CIRAD wood technology database to derive 

robust conversion factors (Vieilledent et al., 2018). The CIRAD wood technology database is a 

collection of S, R, and D values for 3,832 individual trees with >10 samples per individual and 

measurements at four moisture contents w (from 18% to 0%). The data set allows the 

estimation of Dw at any w as well as an estimation of conversion factors to Db by fitting 

regression models with intercepts forced through the origin. For the GWDD v.2, we calculated 

conversion factors for wood densities at four common moisture levels: 0.819 for airdry 
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densities at w = 15%, 0.828 for airdry densities at w = 12%, 0.840 for airdry densities at w = 

8%, and 0.868 for ovendry densities (or w = 0%). 
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Methods S4: Details on Bayesian modelling of wood density variation 

We fitted linear mixed-effects either with a Bayesian framework in the brms R package 

(Bürkner, 2018) and the maximum-likelihood framework of lme4 (Bates et al., 2015). We 

assume basic familiarity with mixed-effect model fitting in R (formulae provided in Table S3), 

and will only focus on details particular to the Bayesian context. 

1/ Distributional model: Unlike lme4, brms allows to explicitly model the distributional 

parameter σ (i.e., the width of the residual distribution). We here use this to allow σ to vary 

across the same taxonomic groupings as the response variable (wood density). Given that 

variances are constrained to be positive and typically follow a lognormal distribution, we used 

the brms default of modelling σ on log-scales. In R’s common random effects model notation, 

this can be simply expressed as log(σ) ~ 1 + (1 | species) or log(σ) ~ 1 + (1 | family / genus / 

species), but we note that in brms, the log-transformation is carried out automatically, so we 

redefine the distributional parameter as σ* = exp(σ) and write: σ* ~ 1 + (1 | species) or σ* ~ 1 

+ (1 | family / genus / species). A visual check of the assumption of lognormality is provided in 

Fig. S4. 

2/ Prior specifications: Bayesian modelling requires the specification of priors, i.e. the 

provision of initial distributions for the parameters to be modelled. Since the data sets used 

in this study are large, exact prior choices have little influence on the resulting inference. 

Nevertheless, specification of weakly informative priors is recommended to constrain the 

initial parameter space and provide weak constraints on expected effect sizes (a form of 

regularization). Throughout all wood density models, we chose the following priors: 
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𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ~ Ν(0.5, 0.25); 𝑙𝑏 = 0 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 (𝑓𝑖𝑥𝑒𝑑) 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 ~ Ν(0.0, 0.1) 

𝐺𝑟𝑜𝑢𝑝 𝑙𝑒𝑣𝑒𝑙 (𝑟𝑎𝑛𝑑𝑜𝑚) 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 ~ Ν(0.1, 0.1); 𝑙𝑏 = 0 

Here, lb stands for “lower bound”. This means that we broadly expect the intercept for any 

wood density model to lie between 0 and 1.0, with fixed effects broadly constrained between 

-0.2 and 0.2, and random effects broadly constrained between 0 and 0.3 (all 95% intervals).

Given that most wood density values lie between 0.3 and 0.8 and that we always standardize 

predictors (scaling and centering), effect sizes outside this range would be very large. Compare 

also to model results, where fixed effect sizes usually lie within a much more restricted [-0.05, 

0.05] and never exceed [-0.1, 0.1]. In addition, we specify the following priors on the 

distributional parameter σ = log(σ*): 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ~ Ν(−3.0, 0.5) 

𝐺𝑟𝑜𝑢𝑝 𝑙𝑒𝑣𝑒𝑙 (𝑟𝑎𝑛𝑑𝑜𝑚) 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 ~ Ν(0.5, 0.5); 𝑙𝑏 = 0 

This corresponds to a realized σ* = exp(-3.0) ~ 0.5, with an approximate range of [0.02, 0.14]. 

3/ Model fitting and checks: All brms models were fit with adapt_delta == 0.95 and 

max_treedepth == 10. We always ran 4 chains in parallel, with 2000 iterations (including 1000 

for warmup) and checked against warnings about divergent transitions, effective sampling 

sizes (ESS), and the mixing of chains (R-hat <= 1.02). If ESS were low, we increased the total 

number of iterations up to 5000. Model fits were visually checked via the inbuilt pp_check() 

function (representative examples in Fig. S3).  
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Methods S5: Overview over R packages 

For completeness, we here list all R packages used in the study. They include terra (Hijmans, 

2023), data.table (Dowle & Srinivasan, 2023), lme4 (Bates et al., 2015), brms (Bürkner, 2018), 

WorldFlora (Kindt, 2020), ggplot2 (Wickham, 2016), ggdist (Kay, 2024), patchwork (Pedersen, 

2024), viridis (Garnier et al., 2023), sjPlot (Lüdecke, 2021), lmodel2 (Legendre, 2018), 

rnaturalearth (Massicotte & South, 2023), rnaturalearthdata (South, 2017), corrplot (Wei & 

Simko, 2021).  
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B) Tables 
 

 

Table S1: Documentation of Global Wood Density Database (GWDD) v.2 columns. Given is the column ID, their 

name and a short description. “WFO” stands for WorldFloraOnline, which was used for taxonomic resolution. 

“SG” stands for “specific gravity”.    

# Field Description 

1 id overall primary id of the record 

2 species species after spell-checking and resolution (WFO) 

3 group group after spell-checking and resolution (WFO) 

4 order order after spell-checking and resolution (WFO) 

5 family family after spell-checking and resolution (WFO) 

6 genus genus after spell-checking and resolution (WFO) 

7 epithet species epithet after spell-checking and resolution (WFO) 

8 epithet_infraspecific infraspecific epithet after spell-checking and resolution (WFO) 

9 authority taxonomic authority after spell-checking and resolution (WFO) 

10 status_taxonomic taxonomic status after spell-checking and resolution (WFO): "accepted", "unresolved", 
“unchecked” 

11 rank_taxonomic taxonomic rank after spell-checking and resolution (WFO):  "genus", "species", "subspecies", 
"variety", "hybrid" 

12 source_taxonomic identifier after spell-checking and resolution (WFO) 

13 wsg wood specific gravity / basic wood density 

14 plant_agg is measurement aggregated over several individuals: 0 or 1, or NA if unclear 

15 plants_sampled number of individuals aggregated over: > 1, if plant_agg == 1, else 1 or NA 

16 location_sample the within-tree location of the sample: "root","bole","branch","twig", "shoot”, NA 

17 type_tissue the type of woody tissue sampled: "sapwood","heartwood","bark", "total (bark to pith)" 

18 region one of nine regions: "South America", "Central America and West Indies", "North America", 
"Asia", "South-East Asia", "Africa", "Indian Ocean", "Europe", "Oceania" 

19 country country of measurement 

20 site site of measurement, at various levels of precision 

21-22 longitude/latitude coordinates of the site of measurement 

23 type_forest type of forest, can contain locally specific types 

24-26 id_plant/age/dbh Individual plant-level information on IDs, age and diameter 

27 experiment is the study an experiment?  if collected during an experiment 1, else 0 

28 experiment_design design of the study or experiment if applicable 

29 source_short the short name of the source of measurements 

30 source_long the full name of the source of measurements 

31 contributor the contributor of the data set 

32 id_dboriginal the id of the sample in the original database 

33 species_reference the taxon supplied to the GWDD v.2 

34 genus_reference the genus supplied to the GWDD v.2 

35 epithet_reference the epithet supplied to the GWDD v.2 

36 epithet_infraspecific_
reference 

the infraspecific epithet supplied to the GWDD v.2 

37 species_reference_ 
canonical 

the taxon supplied to the GWDD v.2., stripped of additional information such as taxonomic 
authorities 

38 value_reference the (untransformed) wood density supplied to the GWDD v.2 

39 quantity_reference the type of wood density that was measured: "Airdry SG/Density", "Ovendry SG/Density", 
"Basic SG/Density" 

40 moisture_airdry the moisture at which wood was considered airdry  (%): 8, 12, 15 if airdry, else NA 

41 wsg_conversion the conversion factor to convert airdry or ovendry densities: 1.0 (Basic SG), 0.8676046 
(Ovendry SG), 0.8404015 (8% SG), 0.8281316 (12% SG), 0.8194401 (15% SG) 

42 backtransformed is the value backconverted from the GWDD v.1? 0 or 1 (only applied to legacy data) 

43 type_sample the type of sample: "core", "disk" 

44 instrument the instrument used to obtain wood density 

45 temperature_drying the temperature at which samples have been dried 
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Binomial Resolved N 
Acacia alleniana Acacia alleniana 1 

Acacia colei Acacia colei 2 

Acacia trinervata Acacia trinervata 1 

Acioa edulis Acioa edulis 1 

Aglaia hiernii Aglaia hiernii 1 

Albizia dinklagei Albizia dinklagei 1 

Albizia lebbekoides Albizia lebbekoides 1 

Alloxylon flammeum Alloxylon flammeum 2 

Anacardium tenuifolium Anacardium tenuifolium 1 

Aspidosperma decussatum Aspidosperma decussatum 1 

Atalaya australiana Atalaya australiana 1 

Borassus flabellifer Borassus flabellifer 1 

Breonia madagascariensis Breonia madagascariensis 1 

Bruguiera exaristata Bruguiera exaristata 1 

Calliandra calothyrsus Calliandra houstoniana var. calothyrsus 1 

Calliandra tweediei Calliandra tweediei 1 

Corymbia dallachiana Corymbia dallachiana 4 

Couepia robusta Couepia robusta 1 

Cullen australasicum Cullen australasicum 1 
Dicymbe corymbosa Dicymbe corymbosa 1 

Diospyros cayennensis Diospyros cayennensis 1 

Dipteryx ferrea Dipteryx ferrea 1 

Endiandra dielsiana Endiandra dielsiana 1 

Eucalyptus glomerosa Eucalyptus glomerosa 1 

Eucalyptus urophylla Eucalyptus urophylla 2 

Grewia crenata Grewia prunifolia 1 

Huertea cubensis Huertea cubensis 1 

Lacistema grandifolium Lacistema grandifolium 1 

Leucaena diversifolia Leucaena diversifolia 1 

Licania fanshawei Licania fanshawei 1 

Licania jimenezii Licania jimenezii 1 

Licania pallida Licania pallida 1 

Licania sparsipilis Leptobalanus sparsipilis 2 

Licaria rigida Licaria rigida 2 

Litsea breviumbellata Litsea breviumbellata 1 

Magnolia yoroconte Magnolia yoroconte 1 

Micrandra minor Micrandra minor 1 

Mischocarpus stipitatus Mischocarpus stipitatus 3 

Mouriri pseudogeminata Mouriri pseudogeminata 1 

Nectandra krugii Nectandra krugii 1 

Parashorea aptera Parashorea aptera 1 

Pinus hartwegii Pinus hartwegii 1 

Pittosporum angustifolium Pittosporum angustifolium 2 

Polyalthia asteriella Monoon asteriellum 1 

Pouteria izabalensis Pouteria izabalensis 1 

Pouteria oblanceolata Pouteria oblanceolata 1 

Pouteria obscura Pouteria obscura 1 

Pterocarpus osun Pterocarpus osun 1 

Rauvolfia paraensis Rauvolfia paraensis 1 

Rhodamnia glauca Rhodamnia glauca 1 
 

Table S2: Removed taxa in the Global Wood Density Database (GWDD) v.2. Shown are taxa from the GWDD v.1 

whose references could not be verified and whose records are not available anymore in the GWDD v.2. We also 

provide their resolved names from World Flora Online (WFO) and their number of entries in the GWDD v.1. With 

one exception (Cullen australicum), the removal of the taxa did not result in the loss of the corresponding genus.
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Table S3: Overview over models and data subsets. This is a quick reference for combinations of data subsets and models used in this study, the questions they address, and 

the subsetting procedure. Except for models M11-M15, which were fitted with Major Axis regression (“MA regression”), model formulas are provided in the mixed-effects 

model notation employed by the R packages lme4 (Bates et al., 2015) and brms (Bürkner, 2018) and fitted with both approaches. In the latter, we explicitly modelled the 

distributional parameter σ* = exp(σ), where σ is the root of residual variance, as σ* ~ 1 + (1 | species) or σ* ~ 1 + (1 | family / genus / species), in line with random effects used 

Model Question Data subset Subsetting procedure Model formula 

M1 

Extent of 
intraspecific 

variation 

n = 79,488, nspecies = 10,780 full set of measurements from individual plants wd ~ 1 + (1 | family / genus / species) + (1 | source) 

M2 n = 79,488, nspecies = 10,780 full set of measurements from individual plants  wd ~ 1 + (1 | family / genus / species) 

M3 n = 49,991, nspecies = 2735 higher quality (>= 3 individuals per species, >= 3 species per genus, >= 3 genera per family) wd ~ 1 + (1 | family / genus / species) + (1 | source) 

M4 n = 49,991, nspecies = 2735 higher quality (>= 3  individuals  per species, >= 3 species per genus, >= 3 genera per family) wd ~ 1 + (1 | family / genus / species) 

M5 

Partitioning of 
intraspecific 

variance 

n = 19,246, nspecies = 147 minimum quality (>= 2 sites per species, >= 2 individuals for one site, >= 2 records for one individual)  wd ~ 1 + (1 | species / site / id_plant) + (1 | source) 

M6 n = 19,246, nspecies = 147 minimum quality (>= 2 sites per species, >= 2 individuals for one site, >= 2 records for one individual)  wd ~ 1 + (1 | species / site / id_plant) 

M7 n =  2,494, nspecies = 35 higher quality (>= 3 sites per species, >= 3 individuals for one site, >= 3 records for one individual) wd ~ 1 + (1 | species / site / id_plant) + (1 | source) 

M8 n =  2,494, nspecies = 35 higher quality (>= 3 sites per species, >= 3 individuals for one site, >= 3 records for one individual) wd ~ 1 + (1 | species / site / id_plant) 

M9 

Within-plant 
gradients 

n = 679, nspecies = 150 species with >= 1 measurement each from heartwood and sapwood wd ~ 1 + sapwood + (1 + sapwood | species) + (1 | source) 

M10 n = 48,494, nspecies = 2,018 species with >= 1 measurement each from branch and trunk wd ~ 1 + branch + (1 + branch | species) + (1 | source) 

M11 nspecies = 150 species with >= 1 measurement each from heartwood and sapwood; species means wdsapwood ~ wdheartwood (MA regression) 

M12 nspecies = 2,018 species with >= 1 measurement each from branch and trunk; species means wdbranch ~ wdtrunk (MA regression) 

M13 nspecies = 523 species with >= 1 measurement each from branch sapwood and trunk sapwood; species means wdbranch ~ wdtrunk (MA regression) 

M14 nspecies = 189 species with 5 randomly drawn measurements from both branch and trunk; species means wdbranch ~ wdtrunk (MA regression) 

M15 n = 3,527, nspecies = 145 Individual plants with 1 randomly drawn measurement from both branch and trunk wdbranch ~ wdtrunk (MA regression) 

M16 

Environmental 
predictors of 
intraspecific 

variation 

n = 41,893, nspecies = 2,160 species with >= 2 distinct locations wd ~ 1 + env1kmspecies + env1kmintrasp + (1 + env1kmintrasp | species) + (1 | source) 

M17 n = 41,893, nspecies = 2,160 species with >= 2 distinct locations wd ~ 1 + env5kmspecies + env5kmintrasp + (1 + env5kmintrasp | species) + (1 | source) 

M18 n = 30,128, nspecies = 692 
species with >= 2 distinct locations + wide intraspecific predictor range (one predictor in top 10% of 
ranges) 

wd ~ 1 + env1kmspecies + env1kmintrasp + (1 + env1kmintrasp | species) + (1 | source) 

M19 n = 30,128,  nspecies = 692 
species with >= 2 distinct locations + wide intraspecific predictor range (one predictor in top 10% of 
ranges) 

wd ~ 1 + env5kmspecies + env5kmintrasp + (1 + env5kmintrasp | species) + (1 | source) 

M20 
Environmental 

predictors 
(tropical / 

extratropical) 

n = 8,783, nspecies = 700 species with >= 3 distinct locations in the tropics wd ~ 1 + env1kmspecies + env1kmintrasp + (1 + env1kmintrasp | species) + (1 | source) 

M21 n = 8,783, nspecies = 700 species with >= 3 distinct locations in the tropics wd ~ 1 + env5kmspecies + env5kmintrasp + (1 + env5kmintrasp | species) + (1 | source) 

M22 n = 26,437, nspecies = 247  species with >= 3 distinct locations outside the tropics wd ~ 1 + env1kmspecies + env1kmintrasp + (1 + env1kmintrasp | species) + (1 | source) 

M23 n = 26,437, nspecies = 247 species with >= 3 distinct locations outside the tropics wd ~ 1 + env5kmspecies + env5kmintrasp + (1 + env5kmintrasp | species) + (1 | source) 

M24 Environmental 
predictors 

(gymnosperms) 

n = 12,089, nspecies = 59 species with >= 2 distinct locations; gymnosperms only wd ~ 1 + env1kmspecies + env1kmintrasp + (1 + env1kmintrasp | species) + (1 | source) 

M25 n = 12,089, nspecies = 59 species with >= 2 distinct locations; gymnosperms only wd ~ 1 + env5kmspecies + env5kmintrasp + (1 + env5kmintrasp | species) + (1 | source) 

M26 
Predictivity 

variable full GWDD v.2, but tested on nspecies = 1,667 (records from >= 5 sources) wd ~ 1 + (1 | family / genus / species) + (1 | source / site) 

M27 variable full GWDD v.2, but tested on nspecies = 318 (species with >= 3 sites, one site with >= 4 records) wd ~ 1 + branch + (1 + branch | family / genus / species) + (1 | source / site) 
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for the response variable wd. The predictor env1km is a shorthand for six environmental and edaphic predictors from CHELSA (Brun et al., 2022; Karger et al., 2017) and 

soilgrids at 1km resolution (Hengl et al., 2017), env5km for the equivalents from TerraClimate (Abatzoglou et al., 2018) and soilgrids (5 km). All environmental and edaphic 

predictors were split into species means (subscript “species”) and within-species deviations from species means (subscript “intrasp”). 
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brms/STAN 
M1: Full dataset  

(incl. source effect) 
M2: Full dataset 

(no source effect)  

M3: High quality subset  
(incl. source effect) 

M4: High quality subset 
(no source effect)  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.557 [0.540; 0.575] 0.554 [0.538; 0.569] 0.579 [0.554; 0.605] 0.575 [0.552; 0.599] 

         

Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var) 

family 0.098 (30%) 0.098 (32%) 0.067 (17%) 0.065 (17%) 

family:genus 0.097 (30%) 0.098 (32%) 0.092 (33%) 0.094 (36%) 

family:genus:species 0.074 (17%) 0.077 (20%) 0.077 (23%) 0.079 (26%) 

source 0.049 (8%) 
  

0.049 (9%) 
  

residual (σ) 0.068 (15%) 0.071 (17%) 0.068 (18%) 0.071 (21%) 

log(σ) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) -2.796 [-2.830; -2.764] -2.786 [-2.818; -2.753] -2.740 [-2.794; -2.686] -2.727 [-2.780; -2.679] 

         

Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var) 

family 0.128 (9%) 0.122 (8%) 0.119 (8%) 0.114 (7%) 

family:genus 0.173 (16%) 0.167 (15%) 0.194 (20%) 0.189 (19%) 

family:genus:species 0.372 (75%) 0.375 (77%) 0.367 (72%) 0.367 (73%) 

Sampling size (N)         

family 249 
 

249 
 

40 
 

40 
 

family:genus 2576 
 

2576 
 

367 
 

367 
 

family:genus:species 10780 
 

10780 
 

2735 
 

2735 
 

source 293 
   

265 
   

total 79488 
 

79488 
 

49991 
 

49991 
 

 
Table S4: Variance components of wood density across the taxonomic hierarchy (brms). Shown are the results 

of four different random effects models (varying intercept models) fitted with the brms R package and the STAN 

software (Bürkner, 2018; Carpenter et al., 2017). The default model (M1) is fitted to the full set of measurements 

from individual plants and includes nested random effects for taxonomic groupings (species-level variation 

nested within genera, genus-level variation nested within families), as well as a crossed random effect for study 

methodology (“source”). Shown are also a simpler model (M2, no random effect for methodology) and the same 

two models fitted to a subset of records with higher quality (>= 3 records per species, >= 3 species per genus, >= 

3 genera per family, M3 and M4). Throughout, the spread of residuals, σ, is itself modelled as varying between 
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species with a nested random effects structure on log-scales (species within genera, genera within families). For 

simplicity, we also provide the residual variance on untransformed scales (σ = root of variance of residuals, where 

residuals are calculated as posterior means). The percentage of total variance explained is provided in brackets 

next to each variance component (random effects + residual variance). Point estimates are posterior means, 

intervals 95% credibility intervals, abbreviated as CIs. 
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lme4 
M1: Full dataset  

(incl. source effect) 
M2: Full dataset 

(no source effect)  

M3: High quality subset  
(incl. source effect) 

M4: High quality subset 
(no source effect)  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.561 [0.544; 0.577] 0.555 [0.540; 0.570] 0.582 [0.557; 0.606] 0.576 [0.553; 0.599] 

         

Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var) 

family 0.096 (29%) 0.096 (30%) 0.063 (16%) 0.062 (16%) 

family:genus 0.095 (29%) 0.096 (30%) 0.092 (33%) 0.093 (36%) 

family:genus:species 0.079 (20%) 0.080 (21%) 0.079 (24%) 0.080 (26%) 

source 0.046 (7%) 
  

0.046 (8%) 
  

residual (σ) 0.071 (16%) 0.074 (18%) 0.069 (19%) 0.073 (22%) 

Sampling size (N)         

family 249 
 

249 
 

40 
 

40 
 

family:genus 2576 
 

2576 
 

367 
 

367 
 

family:genus:species 10780 
 

10780 
 

2735 
 

2735 
 

source 293 
   

265 
   

total 79488 
 

79488 
 

49991 
 

49991 
 

 
Table S5: Variance components of wood density across the taxonomic hierarchy (lme4). Same as Table S4, but 

using reduced maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and not 

explicitly modelling the residual distribution. Intervals are 95% confidence intervals (Wald method). 
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Table S6: Variance components of wood density within species (brms). Shown are the results of four different 

random effects models fitted with brms/STAN (Bates et al., 2015; Carpenter et al., 2017), in order to partition 

within-species variance. The default model (M5) is fitted to a GWDD v.2 subset with minimum quality 

requirements (only species with >= 2 sites, at least one site with >= 2 plants, at least one plant with >= 2 records) 

and includes nested random effects (plant-level variation nested within sites, site-level variation nested within 

species), as well as a crossed random effect for study methodology (“source”). In addition, a simpler model is 

presented (M6, no random effect for methodology) and the same two models fitted to a higher quality subset 

(species with >= 3 sites, at least one site with >= 3 plants, at least one plant with >= 3 records, M7 and M8). As 

described in Table S3, σ is modelled on log-scales, but residual variance is calculated on the original scales. The 

percentage of total variance explained is provided in brackets next to each variance component. Point estimates 

are posterior means, intervals 95% credibility intervals. 

brms/STAN 
M5: Minimum quality  

(incl. source effect) 
M6: Minimum quality 

(no source effect)  

M7: High quality  
(incl. source effect) 

M8: High quality 
(no source effect)  

Wood density  
(g cm-3) 

Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.560 [0.542; 0.578] 0.564 [0.547; 0.582] 0.571 [0.524; 0.615] 0.575 [0.536; 0.610] 

         

Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var) 

species 0.098 (72%) 0.101 (78%) 0.100 (58%) 0.104 (70%) 

species:site 0.025 (5%) 0.032 (8%) 0.035 (7%) 0.042 (11%) 

species:site:idplant 0.017 (2%) 0.017 (2%) 0.028 (5%) 0.028 (5%) 

source 0.035 (9%)   0.057 (19%)   

residual 0.040 (12%) 0.040 (12%) 0.045 (12%) 0.045 (13%) 

log(σ) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) -3.015 [-3.116; -2.916] -3.029 [-3.127; -2.929] -3.049 [-3.233; -2.870] -3.040 [-3.223; -2.859] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.588 
 

0.588 
 

0.531 
 

0.538 
 

Sampling size (N)         

source 95 
   

20 
   

species 147 
 

147 
 

35 
 

35 
 

species:site 1270 
 

1270 
 

233 
 

233 
 

species:site:idplant 14373 
 

14373 
 

1052 
 

1052 
 

total 19246 
 

19246 
 

2494 
 

2494 
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Table S7: Variance components of wood density within species (lme4). Same as Table S6, but using reduced 

maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and not explicitly modelling 

the residual distribution. Intervals are 95% confidence intervals (Wald method). 

  

lme4 
M5: Minimum quality  

(incl. source effect) 
M6: Minimum quality 

(no source effect)  

M7: High quality  
(incl. source effect) 

M8: High quality 
(no source effect)  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.560 [0.541; 0.579] 0.565 [0.549; 0.581] 0.573 [0.530; 0.615] 0.575 [0.541; 0.608] 

         

Random effects Estimate (%Var) Estimate (%Var) Estimate (%Var) Estimate (%Var) 

species 0.094 (64%) 0.097 (68%) 0.092 (50%) 0.096 (58%) 

species:site 0.045 (15%) 0.050 (18%) 0.050 (15%) 0.060 (23%) 

species:site:idplant 0.018 (2%) 0.018 (2%) 0.028 (5%) 0.028 (5%) 

source 0.031 (7%)   0.054 (17%)   

residual 0.041 (12%) 0.041 (12%) 0.047 (13%) 0.047 (14%) 

Sampling size (N)         

source 95 
   

20 
   

species 147 
 

147 
 

35 
 

35 
 

species:site 1270 
 

1270 
 

233 
 

233 
 

species:site:idplant 14373 
 

14373 
 

1052 
 

1052 
 

total 19246 
 

19246 
 

2494 
 

2494 
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 M9: Sapwood 
(brms) 

M9: Sapwood 
(lme4) 

M10: Branchwood  
(brms) 

M10: Branchwood 
(lme4) 

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.572 [0.533; 0.613] 0.575 [0.536; 0.613] 0.601 [0.593; 0.609] 0.603 [0.595; 0.611] 

sapwood -0.001 [-0.028; 0.025] -0.003 [-0.030; 0.024]     

branch     -0.023 [-0.029; -0.017] -0.027 [-0.033; -0.021] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.174 
 

0.174 
 

0.137 
 

0.139 
 

source 0.035  0.032  0.044  0.045  

sapwood 0.060 
 

0.055 
     

branch 
    

0.075 
 

0.083 
 

residual 0.068 
 

0.080 
 

0.065 
 

0.067 
 

log(σ) Estimate CI   Estimate CI   

 -2.787 [-2.925; -2.655]   -2.714 [-2.738; -2.690]  
 

         

Random effects Estimate    Estimate    

species 0.448 
   

0.401 
   

Sampling size (N)         

source 15 
 

15 
 

529 
 

529 
 

species 150 
 

150 
 

2018 
 

2018 
 

total 679 
 

679 
 

48494 
 

48494 
 

 
Table S8: Within-plant effects on wood density variation (brms + lme4). Shown are the results of two different 

mixed effects models (random intercept/random slope models) fitted either with brms/STAN software (Bürkner, 

2018; Carpenter et al., 2017) or lme4 (Bates et al., 2015) to explore within-plant variation in wood density. In 

M9, we model wood density as varying from heartwood to sapwood via a fixed effect for heartwood-sapwood 

(sapwood == 0 vs. sapwood == 1) as well as random intercepts and slopes at species level and a crossed random 

effect for study methodology (“source”). M10 has the same model structure, but with a fixed effect and random 

slopes for the trunkwood-branchwood distinction (branch == 0 vs. branch == 1). In the Bayesian models (brms), 

we also allow the spread of residuals (σ) to vary on log-scales across species. Intervals are 95% 

credibility/confidence intervals (Wald method for ML estimates). 
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Model  Estimate CI  

M11: Sapwood-
Heartwood 

 

    

Intercept 0.160 [0.106; 0.210] 
 

Slope 0.673 [0.589; 0.764] 
 

   
r = 0.78, nspecies = 150 

M12: Branchwood-
Trunkwood 

 

    

Intercept 0.123 [0.100; 0.145] 
 

Slope 0.757 [0.721; 0.795] 
 

   
r = 0.67, nspecies = 2018 

M13: Branchwood-
Trunkwood 

(sapwood only) 

    

Intercept 0.062 [0.020; 0.102] 
 

Slope 0.871 [0.808; 0.938] 
 

   
r = 0.76, nspecies = 523 

M14: Branchwood-
Trunkwood 

(high quality subset) 
 

    

Intercept 0.070 [0.006; 0.128]  

Slope 0.861 [0.761; 0.972]  

   r = 0.76, nspecies = 189 

     

M15: Branchwood-
Trunkwood 

(individual plants) 
 

Intercept 0.014 [0.004; 0.025]  

Slope 0.988 [0.969; 1.009]  

   r = 0.85, n = 3,527, nspecies = 145 

  
Table S9: Within-plant convergence in wood density (lmodel2). Shown are results from five Major Axis 

regression models, fitted with the lmodel2 package in R (Legendre, 2018), to explore whether wood density 

converges towards sapwood and branchwood. Model M11 regresses mean sapwood densities of 150 species 

against their mean heartwood densities, Model M12 regresses mean branchwood densities of 2,018 species 

against their mean trunkwood densities. M13-15 are equivalent to M12, but M13 uses only sapwood 

measurements from branches and trunks, M14 a high-quality subset of measurements (>= 5 measurements of 

branches and >= 5 measurements of trunks), and M15 only measurements where both branch and trunk samples 

have been taken from the same plant, and regresses them at the individual plant instead of the species level. 

Intervals are parametric 95% confidence intervals.   
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brms/STAN 
M16: Full dataset  

CHELSA 1 km 
M17: Full dataset 
TerraClimate 5 km 

M18: High quality subset  
CHELSA 1 km 

M19: High quality subset 
TerraClimate 5 km  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.554 [0.544; 0.564] 0.559 [0.548; 0.569] 0.540 [0.526; 0.554] 0.546 [0.532; 0.559] 

Temperature (intrasp) 0.012 [0.002; 0.022] 0.003 [-0.007; 0.013] 0.013 [0.001; 0.024] 0.004 [-0.007; 0.015] 

Water deficit (intrasp) 0.010 [0.005; 0.015] 0.012 [0.006; 0.018] 0.008 [0.001; 0.014] 0.011 [0.005; 0.018] 

Wind speed (intrasp) -0.003 [-0.007; 0.000] -0.006 [-0.011; -0.001] -0.001 [-0.006; 0.003] -0.003 [-0.008; 0.002] 

Sand fraction. (intrasp) 0.003 [-0.002; 0.007] -0.003 [-0.007; 0.002] 0.006 [0.002; 0.011] 0.004 [-0.001; 0.008] 

Soil pH (intrasp) -0.003 [-0.008; 0.002] -0.005 [-0.010; -0.000] -0.002 [-0.008; 0.003] -0.005 [-0.010; 0.000] 

Cat. ex. cap. (intrasp) 0.009 [0.004; 0.013] 0.001 [-0.004; 0.006] 0.003 [-0.002; 0.008] -0.002 [-0.008; 0.004] 

Temperature (species) 0.022 [0.009; 0.034] 0.013 [0.000; 0.025] 0.002 [-0.015; 0.019] -0.005 [-0.024; 0.012] 

Water deficit (species) 0.038 [0.027; 0.048] 0.036 [0.025; 0.047] 0.045 [0.027; 0.062] 0.042 [0.026; 0.058] 

Wind speed (species) -0.017 [-0.027; -0.007] -0.013 [-0.022; -0.004] -0.021 [-0.038; -0.003] -0.016 [-0.032; -0.001] 

Sand fraction. (species) 0.002 [-0.008; 0.012] -0.000 [-0.010; 0.011] -0.008 [-0.025; 0.010] -0.008 [-0.025; 0.010] 

Soil pH (species) -0.013 [-0.024; -0.001] -0.014 [-0.028; -0.001] -0.010 [-0.029; 0.008] -0.018 [-0.038; 0.002] 

Cat. ex. cap. (species) 0.020 [0.008; 0.032] 0.001 [-0.010; 0.012] 0.012 [-0.005; 0.030] -0.001 [-0.017; 0.016] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.114  0.114  0.112  0.112 
 

source 0.051  0.051  0.053  0.052  

Temperature (intrasp) 0.058 
 

0.061 
 

0.060 
 

0.059 
 

Water deficit (intrasp) 0.038 
 

0.032 
 

0.039 
 

0.033 
 

Wind speed (intrasp) 0.019  0.025  0.022  0.025  

Sand fraction. (intrasp) 0.029  0.033  0.018  0.019  

Soil pH (intrasp) 0.035  0.030  0.029  0.024  

Cat. ex. cap. (intrasp) 0.024  0.031  0.021  0.032  

residual 0.062 
 

0.062 
 

0.054 
 

0.055 
 

log(σ) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) -2.772 [-2.802; -2.743] -2.766 [-2.796; -2.736] -2.860 [-2.906; -2.814] -2.854 [-2.902; -2.808] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.497  0.500  0.463  0.468  
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Sampling size (N)         

source 366 
 

366 
 

338 
 

338 
 

species 2160 
 

2160 
 

692 
 

692 
 

total 41879 
 

41893 
 

30128 
 

30128 
 

 
Table S10: Environmental predictors of wood density variation (brms). Shown are the results of four different 

mixed effects models (varying intercept/varying slope models) fitted with brms/STAN software (Bürkner, 2018; 

Carpenter et al., 2017) to explore environmental predictors of wood density variation within and across species. 

All models have the same structure, relying on three environmental predictors (annual means of temperature, 

water deficit, and wind speed) and three edaphic predictors (mean sand content, mean pH, mean cation 

exchange capacity). All six predictors are standardized (scaled) and split into species mean values (indicated by 

“species”) and within-species deviations from the species means (indicated by “intrasp”). Species are allowed to 

vary both in their intercept and in their within-species effects (varying slopes). In addition, we include a crossed 

random effect for the measurement source/methodology, and allow the distributional parameter σ to vary 

across species. M16 and M17 are fitted to all species in the GWDD v.2 with wood density records from at least 

two distinct geographic locations (explicit coordinates), but differ in their environmental layers and scale of 

aggregation: M16 uses 1 km resolution data from CHELSA (Brun et al., 2022; Karger et al., 2017) and soilgrids 

predictions pre-aggregated at 1 km (Hengl et al., 2017). M17 uses ~4-5 km resolution data from TerraClimate 

(Abatzoglou et al., 2018) in conjunction with pre-aggregated 5 km soilgrids data. M18 and M19 use the same 

model structures, but restrict wood density records to species that display large within-species environmental 

or edaphic gradients, including only species for which the range of at least one environmental or edaphic 

predictor is in the top 10% of all species’ ranges for that predictor. Point estimates are posterior means, intervals 

95% credibility intervals. A visualization of effect sizes can be found in Figures S7-8. 
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Table S11: Environmental predictors of wood density variation (lme4). Same as Table S10, but using reduced 

maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and not explicitly modelling 

the residual distribution. Intervals are 95% confidence intervals (Wald method).  

lme4 
M16: Full dataset  

CHELSA 1 km 
M17: Full dataset 
TerraClimate 5 km 

M18: High quality subset  
CHELSA 1 km 

M19: High quality subset 
TerraClimate 5 km  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.555 [0.545; 0.565] 0.559 [0.548; 0.569] 0.540 [0.526; 0.554] 0.544 [0.530; 0.558] 

Temperature (intrasp) 0.013 [0.002; 0.024] 0.001 [-0.009; 0.012] 0.014 [0.002; 0.026] 0.002 [-0.010; 0.014] 

Water deficit (intrasp) 0.010 [0.004; 0.015] 0.014 [0.007; 0.021] 0.007 [0.000; 0.014] 0.012 [0.004; 0.021] 

Wind speed (intrasp) -0.003 [-0.007; 0.000] -0.008 [-0.013; -0.004] -0.002 [-0.007; 0.003] -0.005 [-0.011; 0.001] 

Sand fraction. (intrasp) 0.004 [-0.002; 0.009] -0.004 [-0.010; 0.002] 0.010 [0.004; 0.016] 0.002 [-0.005; 0.009] 

Soil pH (intrasp) -0.005 [-0.011; 0.001] -0.007 [-0.013; -0.001] -0.001 [-0.007; 0.005] -0.005 [-0.012; 0.001] 

Cat. ex. cap. (intrasp) 0.012 [0.007; 0.017] 0.003 [-0.003; 0.009] 0.006 [0.001; 0.011] -0.000 [-0.007; 0.006] 

Temperature (species) 0.022 [0.010; 0.035] 0.013 [0.000; 0.025] 0.003 [-0.014; 0.020] -0.005 [-0.023; 0.013] 

Water deficit (species) 0.038 [0.027; 0.048] 0.035 [0.024; 0.046] 0.044 [0.026; 0.062] 0.042 [0.027; 0.058] 

Wind speed (species) -0.018 [-0.028; -0.009] -0.015 [-0.023; -0.006] -0.021 [-0.039; -0.004] -0.016 [-0.031; -0.001] 

Sand fraction. (species) 0.005 [-0.005; 0.016] 0.002 [-0.009; 0.013] -0.004 [-0.021; 0.014] -0.007 [-0.025; 0.011] 

Soil pH (species) -0.012 [-0.024; -0.000] -0.013 [-0.026; 0.000] -0.008 [-0.027; 0.010] -0.016 [-0.036; 0.004] 

Cat. ex. cap. (species) 0.022 [0.010; 0.033] 0.002 [-0.009; 0.014] 0.015 [-0.003; 0.032] 0.001 [-0.016; 0.018] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.116 
 

0.116 
 

0.113 
 

0.113 
 

source 0.048  0.048  0.053  0.053  

Temperature (intrasp) 0.067 
 

0.068 
 

0.063 
 

0.064 
 

Water deficit (intrasp) 0.052 
 

0.048 
 

0.044 
 

0.048 
 

Wind speed (intrasp) 0.020  0.026  0.028  0.028  

Sand fraction. (intrasp) 0.047  0.054  0.036  0.042  

Soil pH (intrasp) 0.051  0.045  0.034  0.039  

Cat. ex. cap. (intrasp) 0.027  0.038  0.024  0.037  

residual 0.063 
 

0.064 
 

0.055 
 

0.055 
 

Sampling size (N)         

source 366 
 

366 
 

338 
 

338 
 

species 2160 
 

2160 
 

692 
 

692 
 

total 41879 
 

41893 
 

30128 
 

30128 
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brms/STAN 
M20: Tropical species  

CHELSA 1 km 
M21: Tropical species 

TerraClimate 5 km 
M22: Extratropical species  

CHELSA 1 km 
M23: Extratropical species 

TerraClimate 5 km  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.528 [0.475; 0.582] 0.517 [0.467; 0.568] 0.569 [0.549; 0.588] 0.561 [0.540; 0.581] 

Temperature (intrasp) 0.013 [-0.006; 0.032] -0.000 [-0.019; 0.018] 0.016 [0.002; 0.030] 0.006 [-0.009; 0.021] 

Water deficit (intrasp) 0.012 [0.004; 0.021] 0.021 [0.008; 0.034] 0.001 [-0.007; 0.009] 0.011 [0.003; 0.020] 

Wind speed (intrasp) -0.004 [-0.011; 0.003] -0.021 [-0.031; -0.011] 0.002 [-0.003; 0.007] 0.004 [-0.001; 0.010] 

Sand fraction. (intrasp) 0.004 [-0.005; 0.014] -0.009 [-0.019; 0.001] 0.004 [0.001; 0.007] 0.002 [-0.001; 0.006] 

Soil pH (intrasp) -0.013 [-0.021; -0.004] -0.012 [-0.023; -0.002] 0.001 [-0.004; 0.006] -0.004 [-0.009; 0.001] 

Cat. ex. cap. (intrasp) 0.019 [0.010; 0.029] -0.003 [-0.014; 0.008] 0.001 [-0.004; 0.005] -0.002 [-0.008; 0.003] 

Temperature (species) 0.022 [-0.030; 0.072] -0.010 [-0.056; 0.036] 0.043 [0.022; 0.064] 0.042 [0.020; 0.065] 

Water deficit (species) 0.059 [0.038; 0.080] 0.078 [0.051; 0.104] 0.033 [0.009; 0.056] 0.027 [0.010; 0.045] 

Wind speed (species) -0.033 [-0.056; -0.010] -0.049 [-0.068; -0.029] 0.001 [-0.018; 0.020] 0.015 [-0.004; 0.035] 

Sand fraction. (species) 0.013 [-0.017; 0.042] -0.009 [-0.039; 0.022] -0.007 [-0.025; 0.011] -0.013 [-0.031; 0.005] 

Soil pH (species) -0.031 [-0.055; -0.007] -0.048 [-0.079; -0.017] -0.015 [-0.041; 0.011] -0.010 [-0.033; 0.013] 

Cat. ex. cap. (species) 0.027 [-0.001; 0.056] -0.021 [-0.051; 0.009] 0.008 [-0.009; 0.025] 0.003 [-0.014; 0.021] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.122  0.121  0.088  0.087 
 

source 0.048  0.049  0.054  0.052  

Temperature (intrasp) 0.049 
 

0.049 
 

0.065 
 

0.075 
 

Water deficit (intrasp) 0.038 
 

0.044 
 

0.037 
 

0.034 
 

Wind speed (intrasp) 0.012  0.029  0.020  0.023  

Sand fraction. (intrasp) 0.044  0.051  0.010  0.011  

Soil pH (intrasp) 0.043  0.043  0.020  0.018  

Cat. ex. cap. (intrasp) 0.034  0.045  0.016  0.023  

residual 0.085 
 

0.085 
 

0.049 
 

0.049 
 

log(σ) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) -2.603 [-2.645; -2.561] -2.599 [-2.643; -2.557] -3.130 [-3.195; -3.068] -3.129 [-3.192; -3.065] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.437  0.442  0.415  0.416  
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Sampling size (N)         

source 140  140  253  253  

species 700  700  247  247  

total 8783  8783  26437  26439  

 
Table S12: Environmental predictors of wood density variation, in and outside of tropics (brms). Same as Table 

S10, but splitting the original data set into tropical species (>= 3 occurrences in the GWDD v.2 between 23.5 N 

and 23.5 S) and extratropical species (>= 3 occurrences outside of 23.5 N and 23.5 S). Point estimates are 

posterior means, intervals 95% credibility intervals. A visualization of effect sizes can be found in Figures S9-10. 
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Table S13: Environmental predictors of wood density variation, in and outside of tropics (lme4). Same as Table 

S12, but using reduced maximum likelihood modelling instead of a Bayesian approach (Bates et al., 2015) and 

not explicitly modelling the residual distribution. Intervals are 95% confidence intervals (Wald method).   

lme4 
M20: Tropical species  

CHELSA 1 km 
M21: Tropical species 

TerraClimate 5 km 
M22: Extratropical species  

CHELSA 1 km 
M23: Extratropical species 

TerraClimate 5 km  

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.520 [0.466; 0.574] 0.515 [0.464; 0.567] 0.568 [0.549; 0.588] 0.560 [0.540; 0.580] 

Temperature (intrasp) 0.022 [0.002; 0.042] -0.003 [-0.022; 0.016] 0.017 [0.003; 0.030] 0.004 [-0.012; 0.019] 

Water deficit (intrasp) 0.009 [0.001; 0.018] 0.020 [0.007; 0.033] 0.001 [-0.007; 0.009] 0.014 [0.006; 0.022] 

Wind speed (intrasp) -0.001 [-0.008; 0.006] -0.017 [-0.027; -0.007] 0.002 [-0.002; 0.007] 0.005 [-0.001; 0.010] 

Sand fraction. (intrasp) 0.005 [-0.005; 0.014] -0.009 [-0.019; 0.001] 0.004 [0.000; 0.007] 0.002 [-0.001; 0.005] 

Soil pH (intrasp) -0.014 [-0.023; -0.006] -0.015 [-0.026; -0.004] 0.002 [-0.003; 0.007] -0.004 [-0.008; 0.000] 

Cat. ex. cap. (intrasp) 0.021 [0.012; 0.030] -0.002 [-0.013; 0.009] 0.001 [-0.003; 0.005] -0.002 [-0.007; 0.004] 

Temperature (species) 0.034 [-0.018; 0.085] -0.008 [-0.055; 0.039] 0.043 [0.023; 0.063] 0.042 [0.020; 0.064] 

Water deficit (species) 0.059 [0.037; 0.080] 0.079 [0.052; 0.106] 0.035 [0.011; 0.059] 0.028 [0.011; 0.045] 

Wind speed (species) -0.031 [-0.054; -0.007] -0.049 [-0.068; -0.029] 0.001 [-0.018; 0.020] 0.015 [-0.004; 0.034] 

Sand fraction. (species) 0.015 [-0.016; 0.045] -0.007 [-0.037; 0.024] -0.006 [-0.023; 0.011] -0.012 [-0.030; 0.005] 

Soil pH (species) -0.033 [-0.057; -0.009] -0.050 [-0.081; -0.019] -0.016 [-0.042; 0.010] -0.010 [-0.033; 0.012] 

Cat. ex. cap. (species) 0.032 [0.003; 0.062] -0.018 [-0.048; 0.012] 0.011 [-0.007; 0.029] 0.004 [-0.013; 0.022] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.121 
 

0.119 
 

0.087 
 

0.086 
 

source 0.045  0.047  0.053  0.051  

Temperature (intrasp) 0.030 
 

0.029 
 

0.059 
 

0.074 
 

Water deficit (intrasp) 0.037 
 

0.041 
 

0.036 
 

0.032 
 

Wind speed (intrasp) 0.013  0.020  0.019  0.020  

Sand fraction. (intrasp) 0.043  0.050  0.012  0.010  

Soil pH (intrasp) 0.037  0.037  0.018  0.014  

Cat. ex. cap. (intrasp) 0.011  0.031  0.014  0.023  

residual 0.092 
 

0.093 
 

0.050 
 

0.050  

Sampling size (N)         

source 140 
 

140 
 

253 
 

253 
 

species 700 
 

700 
 

247 
 

247 
 

total 8783 
 

8783 
 

26437 
 

26439 
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M24: Gymnosperms  

CHELSA 1 km 
(brms) 

M24: Gymnosperms  
CHELSA 1 km 

(lme4) 

M25: Gymnosperms 
TerraClimate 5 km 

(brms) 

M25: Gymnosperms 
TerraClimate 5 km 

(lme4) 

Wood density (g cm-3) Estimate CI Estimate CI Estimate CI Estimate CI 

(Intercept) 0.476 [0.452; 0.499] 0.477 [0.457; 0.497] 0.471 [0.447; 0.494] 0.469 [0.449; 0.489] 

Temperature (intrasp) 0.021 [-0.008; 0.047] 0.035 [0.013; 0.057] -0.001 [-0.042; 0.036] -0.011 [-0.052; 0.030] 

Water deficit (intrasp) -0.008 [-0.025; 0.009] -0.011 [-0.028; 0.005] 0.014 [-0.008; 0.036] 0.022 [0.005; 0.040] 

Wind speed (intrasp) 0.010 [0.002; 0.021] 0.013 [0.004; 0.022] 0.006 [-0.005; 0.018] 0.006 [-0.004; 0.016] 

Sand fraction. (intrasp) 0.000 [-0.007; 0.007] -0.003 [-0.011; 0.004] 0.002 [-0.006; 0.009] 0.001 [-0.007; 0.008] 

Soil pH (intrasp) -0.010 [-0.022; 0.002] -0.012 [-0.021; -0.003] -0.015 [-0.027; -0.005] -0.015 [-0.022; -0.007] 

Cat. ex. cap. (intrasp) 0.005 [-0.005; 0.015] 0.003 [-0.006; 0.012] 0.002 [-0.007; 0.012] 0.003 [-0.007; 0.012] 

Temperature (species) 0.004 [-0.019; 0.029] -0.002 [-0.022; 0.019] -0.006 [-0.032; 0.021] -0.000 [-0.022; 0.021] 

Water deficit (species) 0.034 [-0.001; 0.068] 0.041 [0.013; 0.068] 0.041 [0.008; 0.073] 0.036 [0.009; 0.064] 

Wind speed (species) -0.012 [-0.039; 0.015] -0.016 [-0.038; 0.007] -0.003 [-0.026; 0.020] 0.007 [-0.012; 0.027] 

Sand fraction. (species) -0.002 [-0.028; 0.023] -0.015 [-0.031; 0.001] 0.005 [-0.018; 0.028] 0.004 [-0.014; 0.023] 

Soil pH (species) -0.005 [-0.035; 0.025] -0.013 [-0.034; 0.009] -0.006 [-0.037; 0.025] -0.002 [-0.026; 0.022] 

Cat. ex. cap. (species) -0.001 [-0.027; 0.024] -0.006 [-0.025; 0.014] -0.010 [-0.035; 0.014] -0.009 [-0.027; 0.010] 

         

Random effects Estimate  Estimate  Estimate  Estimate  

species 0.052  0.049  0.050  0.049 
 

source 0.053  0.054  0.052  0.052  

Temperature (intrasp) 0.051 
 

0.046 
 

0.087 
 

0.106 
 

Water deficit (intrasp) 0.033 
 

0.036 
 

0.038 
 

0.043 
 

Wind speed (intrasp) 0.016  0.023  0.018  0.022  

Sand fraction. (intrasp) 0.012  0.015  0.012  0.015  

Soil pH (intrasp) 0.020  0.021  0.017  0.012  

Cat. ex. cap. (intrasp) 0.015  0.020  0.014  0.019  

residual 0.050 
 

0.050 
 

0.050 
 

0.051 
 

log(σ) Estimate CI   Estimate CI   

(Intercept) -3.041 [-3.166; -2.920]   -3.031 [-3.155; -2.905]   

         

Random effects Estimate    Estimate    

species 0.417    0.424    
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Sampling size (N)         

source 159  159  159  159  

species 59  59  59  59  

total 12089  12089  12089  12089  

 

Table S14: Environmental predictors of wood density variation in gymnosperms (brms + lme4). Same as Tables 

S10-13, but with predictions only for gymnosperms. Shown are both models fits with the brms package and with 

lme4. Intervals are 95% credibility/confidence intervals (Wald method for ML estimates). Note how most effects 

are weak and overlap with 0. A visualization of effect sizes can be found in Figure S11. 
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brms/STAN 
M20: Tropical species  

CHELSA 1 km 
M21: Tropical species 

TerraClimate 5 km 
M22: Extratropical species  

CHELSA 1 km 
M23: Extratropical species 

TerraClimate 5 km  

Wood density (g cm-3) Estimate 
(original) 

Estimate 
(rescaled) 

Estimate 
(original) 

Estimate 
(rescaled) 

Estimate 
(original) 

Estimate 
(rescaled) 

Estimate 
(original) 

Estimate 
(rescaled) 

Temperature (intrasp) 0.014 0.003 0.001 0.000 0.017 0.005 0.006 0.002 

Water deficit (intrasp) 0.012 0.008 0.021 0.010 0.001 0.000 0.012 0.005 

Wind speed (intrasp) -0.003 -0.002 -0.020 -0.009 0.002 0.001 0.004 0.002 

Sand fraction. (intrasp) 0.005 0.002 -0.008 -0.003 0.004 0.003 0.002 0.002 

Soil pH (intrasp) -0.012 -0.006 -0.012 -0.006 0.001 0.001 -0.004 -0.002 

Cat. ex. cap. (intrasp) 0.019 0.008 -0.003 -0.001 0.001 0.001 -0.002 -0.001 

Temperature (species) 0.030 0.033 -0.004 -0.005 0.045 0.041 0.045 0.041 

Water deficit (species) 0.057 0.049 0.078 0.055 0.032 0.024 0.026 0.023 

Wind speed (species) -0.031 -0.029 -0.047 -0.053 0.003 0.002 0.016 0.011 

Sand fraction. (species) 0.017 0.009 -0.005 -0.003 -0.006 -0.005 -0.012 -0.009 

Soil pH (species) -0.031 -0.024 -0.048 -0.037 -0.014 -0.012 -0.009 -0.007 

Cat. ex. cap. (species) 0.031 0.020 -0.017 -0.011 0.009 0.008 0.004 0.004 

 
Table S15: Rescaled environmental effect sizes, in and outside of tropics (brms). Same as fixed effects shown 

in Table S12, but extended to include separately rescaled estimates of within-species and among-species effects. 

Rescaling was carried out by calculating average within-species and among-species standard deviations for each 

predictor and then multiplying effect sizes with these standard deviations. The rescaled effect sizes thus 

correspond to the effect sizes one might observe across a species actual range.  
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Database 
Method 

samples for 
prediction 

RMSE 
(g cm-3) 

R2 nspecies 

GWDD v.2 

Wood density means 

0 / genus 0.083 0.640 1557 

1 0.084 0.730 1667 

2 0.056 0.860 1667 

M26: Hierarchical model 

0 / genus 0.071 0.710 1557 

1 0.053 0.840 1667 

2 0.043 0.900 1667 

M27: Hierarchical model  
branch & trunk 

0 / genus 0.060 0.730 1557 

1 0.046 0.840 1667 

2 0.038 0.900 1667 

GWDD v.1 Wood density means 

0 / genus 0.098 0.620 1447 

1 0.095 0.740 1580 

2 0.069 0.840 1312 

  
 
Table S16: Quality of wood density predictions at the species level. Shown is to what extent the wood density 

of 1,667 species (all well-sampled in the GWDD v.2, with records from >= 5 sources) can be estimated when only 

a limited number of wood density measurements are available (0, 1 or 2). The baseline approach is to estimate 

species-level wood density from simple wood density means, either at genus level (0 samples) or averaging 

across the provided 1-2 samples. Shown are also two alternative hierarchical modelling approaches: M26, which 

is a simple random effects model, with a nested taxonomic structure plus extra random effects for study and 

measurement location (cf. Table S3), as well as M27, which extends M26 with a fixed effect for the trunkwood-

branchwood distinction. Both models were refitted three times for each species, using both the local species-

specific samples (0, 1, 2) and the remainder of the GWDD v.2. To reduce the computational burden, we used 

only the lme4 package. Summary statistics of predictive power are the mean absolute error (MAE, g cm-3), root 

mean square error (RMSE, g cm-3) and R2, calculated with reference to estimates based on a full set of 

measurements (>= 5 sources). A comparison with the GWDD v.1 is provided for completeness, again taking the 

GWDD v.2 values as reference. We note that in some cases, species were either not available for prediction (i.e., 

not recorded in GWDD v.1), or were the sole species in their genus, which also removed them from predictions 

at genus level. 
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 RMSE (g cm-3) 

 
Number of local samples 

R2 
 

Number of local samples 

Model Extent 0 1 2 3 0 1 2 3 

Species means 

Global 0.089 0.088 0.087 0.086 0.690 0.700 0.710 0.710 

Study 0.093 0.091 0.087 0.086 0.660 0.680 0.710 0.710 

Local  0.107 0.085 0.082  0.590 0.720 0.740 

M26: Hierarchical model Global 0.088 0.086 0.085 0.084 0.700 0.710 0.720 0.730 

M27: Hierarchical model  
(branch & trunk) 

Global 0.087 0.086 0.084 0.083 0.710 0.710 0.730 0.730 

 
Table S17: Quality of wood density predictions at the individual plant level. Shown is the predictive power of 

the same models as in Table S16, but now applied to predict individual-level wood density and tested at well-

sampled sites from well-sampled studies (only species and studies with >= 3 locations per study and >= 4 

measurements per site, nspecies = 318). For each approach, we show how well it is able to predict an individual 

wood density measurement when 0, 1, 2, or 3 measurements from the same locality and the same study 

(identical measurement methodology) are available. The baseline is provided by simple species means, 

calculated in three ways: 1/ using a combination of the 0, 1, 2, or 3 local samples and all measurements from 

elsewhere in the GWDD v.2 (“Global”), 2/ using a combination of the 0, 1, 2, or 3 local samples and all samples 

measured as part of the same study (“Study”), or 3/ using only the 0, 1, 2, or 3 local samples (“Local”). This is 

compared to two hierarchical modelling approaches (M26, M27) that model wood density with a nested 

taxonomic hierarchy as well as crossed random effects for study methodology and study site, thus implicitly 

adjusting predictions for methodological biases and local wood density shifts. Note that, assuming that within-

species wood density variation is distributed with sd = 0.068 g cm-3, we would expect an RMSE = 0.096 g cm-3, 

i.e., sqrt(2 * 0.0682) when predicting a single tree’s wood density from another tree with no other knowledge 

about measurement location or the type of tissue sampled. The hierarchical models clearly outperform this 

expectation (RMSE = 0.086 g cm-3). 
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C) Figures 

 
Fig. S1: Sample posterior predictive checks. Shown are posterior predictive checks for four of the models 

described in Table S3, using the default pp_check() function from the package brms. The black lines describe the 

distribution of wood density values for each of the Global Wood Density Database (GWDD) v.2 subsets used in 

models M1, M5, M9 and M16, the blue lines describe the modelled posterior densities from 10 random posterior 

draws. All model fits successfully reproduced the data distribution, with no deviations in models M1 and M16 

(panels a, d), a negligible underestimation of the mode in model M5 (panel c) and some uncertainty, though no 

bias, in model M9 (panel c).  
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Fig. S2: Variance components estimated from a Bayesian hierarchical model. Shown are the different variance 

components as estimated from a Bayesian hierarchical model (M1 in Table S3). Shown are the nested random 

effects at family, genus and species level, as well as residual variation (intraspecific variation + error). We 

explicitly modelled residual variance to assess the consistency of intraspecific variation, and also included a 

crossed random effect for methodology (i.e., the study where values were obtained from). The figure shows that 

variation at family and genus level is much larger than species-level or intraspecific variation, and that these are 

again larger than methodological effects. Note that the residuals (intraspecific variation + error) are 

overdispersed compared to a normal distribution, with a large number of outliers. Throughout, black dots 

indicate the median effect size and black intervals quantile ranges (66% and 95%).  
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Fig. S3: Intraspecific variation in selected species from six plant families. Shown are estimated intraspecific 

wood density distributions for selected taxa, based on predictions from model M1 (Table S3). All values are based 

on wood density residuals, but have been corrected for methodological biases by subtracting study effects (cf. 

Fig. S2 and Table S4). Throughout, black dots indicate the median effect size and black intervals quantile ranges 

(66% and 95%). Sample size (n) is provided for each species. 
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Fig. S4: Consistency of the extent of intraspecific variation across taxa. Shown is the distribution of empirical 

within-species standard deviations (sd) of wood density across all species with more than one plant-level record 

(a, nspecies = 6,361), as well as the distribution of inferred standard deviations (or σ) across the same species (b). 

The black dot indicates the median, the black intervals the corresponding quantile ranges (66% and 95%). Note 

that both follow approximately lognormal distributions, but the empirical standard deviations have a wider 

distribution. This is expected, as they include many species with low sample sizes (e.g. 2-3 measurements), which 

the modelled distribution corrects for. 
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Fig. S5: Wood density variation between trunkwood and branchwood, high quality regressions. Shown is the 

same graph as in Fig. 3 (panels b and c), but for a subset of records where branch and trunk samples have been 

taken from the same individuals. Panel a) shows species mean values for both trunkwood and branchwood,  

panel b) shows each plant’s mean trunkwood density and mean branchwood density. Blue lines are Major Axis 

regression lines, dashed lines the 95% CI. Note how the convergence observed in panel a) and in Fig. 3 disappears 

in panel b).  
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Fig. S6:  Wood density variation in trunkwood and in branchwood in selected species. Shown are distributions 

of within-species variation in wood density for sample species from four families, split by within-tree location of 

samples (trunkwood or branchwood). Families and species were chosen to maximize sampling size. Black dots 

indicate the median effect size and black intervals quantile ranges (66% and 95%). Note how there is no clear 

clear convergence (i.e., branchwood distributions being closer to each other), nor a simple predictive pattern.   
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Fig. S7: Environmental and edaphic effects on wood density. Panels a) and b) are equivalent to panels a) and b) 

in Fig. 4 in the main text and show global within-species and between-species effects of environmental variables 

on wood density. Effects are derived from a Bayesian hierarchical model, with all predictors scaled by one 

standard deviation. Climatic variables were from CHELSA/BIOCIM+ (Karger et al., 2017; Brun et al., 2022), edaphic 

variables from soilgrids (Hengl et al., 2017). X-axis limits were chosen wider than in the main text for 

comparability with effect sizes in data subsets (cf. Fig. S9). Panels c) and d) are the equivalents of panels a) and 

b), but using the TerraClimate (Abatzoglou et al., 2018) climatology 1981-2010. Variables are mean annual 

temperature (“Temperature”, in °C), climatic water deficit (“Water deficit”, in mm), and mean wind speed (“Wind 

speed”, m s-1). The soilgrids layers are the same, but have been extracted at 5 km  to match the 4-5 km resolution 

of TerraClimate. The corresponding model results can be found in Table S10. Throughout, black dots indicate the 

median effect size and black intervals quantile ranges (66% and 95%). 
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Fig. S8: Environmental and edaphic effects on wood density, high-quality subset. Same as Fig. S7, but for a 

higher-quality subset of the GWDD v.2 where each species varied strongly in at least environmental variable. 

This meant that a species was only included if the range of at least one of the environmental predictors was in 

the top 10% of ranges for that predictor among all other species. We note that this may slightly bias the data set 

towards the better-sampled higher latitude regions. The corresponding model results can be found in Table S10. 

Throughout, black dots indicate the median effect size and black intervals quantile ranges (66% and 95%). 
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Fig. S9: Environmental and edaphic effects on wood density, within tropics. Same as Fig.S7-8, but for a subset 

of species with at least three locations in the tropics. Locations were defined as distinct 5 km grid cells.  The 

corresponding model results can be found in Table S12. Throughout, black dots indicate the median effect size 

and black intervals quantile ranges (66% and 95%). 
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Fig. S10: Environmental and edaphic effects on wood density, outside of tropics. Same as Fig.S7-9, but for a 

subset of species with at least three locations outside of the tropics. Locations were defined as distinct 5 km grid 

cells. The corresponding model results can be found in Table S12. Throughout, black dots indicate the median 

effect size and black intervals quantile ranges (66% and 95%). 
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Fig. S11: Correlation between within-species effects and between-species effects. Shown are correlations 

between estimated within-species and between-species effects of environmental and edaphic predictors on 

wood density variation. Every point represents an estimated effect of one predictor from one of the 8 models 

we used (Table S3, Tables S10-13) and counting Bayesian and ML models separately (96 estimates overall). The 

overall correlation is r = 0.83. Note that this correlation between within-species and between-species effects is 

not due to correlation between environmental predictors within and across species, as these are decoupled by 

construction and also have strikingly different correlation structures (Fig. S17). 
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Fig. S12: Environmental and edaphic effects on wood density in gymnosperms. Same as Fig.S7-10, but for 

gymnosperms only. The corresponding model results can be found in Table S15. Throughout, black dots indicate 

the median effect size and black intervals quantile ranges (66% and 95%). Note how most effects are close to 0 

or strongly overlap with 0.  
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Fig. S13: Temperature effects on within-species wood density variation, examples. Shown are the within-

species effects of temperature variation on wood density in four temperate species that cover large 

environmental gradients and are well-sampled (several studies or large sample sizes). Each line represents a 

different study and is fitted via simple OLS regression. Note how wood density increases slightly with 

temperature, but how this effect is overwhelmed by variation around the regression line and even differs 

between studies. Temperatures are based on the CHELSA/BIOCLIM+ data set (Karger et al., 2017; Brun et al., 

2022).   
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Fig. S14: Water deficit effects on within-species wood density variation, examples. Same as Fig. S11, but for 

water deficit. Shown are the within-species effects of water deficit on wood density in four tropical species that 

cover large environmental gradients and are well-sampled (two different studies for each). Each line represents 

a different study and is fitted via simple OLS regression. Note how there is no clear overall effect and how effect 

sizes are weak even across large gradients. Water deficits are based on the CHELSA/BIOCLIM+ data set (Karger 

et al., 2017; Brun et al., 2022). 
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Fig. S15: Intraspecific effects of climatic water deficit on wood density. Enlarged panel from Fig. 4a in main text, 

with species labels superimposed on regression lines for improved accessibility. Shown are the mean intraspecific 

effect of climatic water deficit on wood density, as estimated from a hierarchical model (M16) and a large set of 

geolocated wood density records (dashed black slope, nspecies = 2,160) as well as species-specific slopes and raw 

data for 19 species that cover a wide geographic and wood density range (in colour, n = 3,224, > 20 samples per 

species). 
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Fig. S16: Intraspecific effects of mean annual temperature on wood density. Enlarged panel from Fig. 4b in main 

text, with species labels superimposed on regression lines for improved accessibility. Shown are the mean 

intraspecific effect of mean annual temperature on wood density, as estimated from a hierarchical model (M16) 

and a large set of geolocated wood density records (dashed black slope, nspecies = 2,160), as well as species-specific 

slopes and raw data for 19 species that cover a wide geographic and wood density range (in colour, n = 3,224, > 

20 samples per species).  
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Fig. S17: Correlation between environmental and edaphic predictors. Shown are the correlations between 

environmental and edaphic predictors matched to the Global Wood Density Database (GWDD) v.2. All predictors 

are separated into species mean values, summarizing the typical environment a species experiences (“species” 

in brackets), and deviations from the species means at the individual level, i.e., indicating within-species 

environmental variation (“intrasp” in brackets). Correlation matrices are shown for both sets of predictors used 

throughout the study, i.e. the CHELSA climatologies 1981-2010 (Brun et al., 2022; Karger et al., 2017) in 

conjunction with 1 km gridded soilgrids layers (Hengl et al., 2017), as well as TerraClimate climatologies 1981-

2010 (Abatzoglou et al., 2018) in conjunction with 5 km gridded soilgrids layers. Note that, by construction, 

species means are fully decorrelated from within-species deviations from the species means (r < 0.01), hence 

large parts of the correlation matrices appear empty. Also note that, at species level, temperature is correlated 

in excess of |r| = 0.7 with one variable (cation exchange capacity) and has an absolute correlation of ~0.7 with 

one other variable (wind speed). Since we are predominately interested in within-species effects and not in 

exactly partitioning out species-level effects, we include all three variables in the model. A high absolute 

correlation, but below 0.7, also exists between soil pH and water deficit. 
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