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Abstract

Whilst high-resolution spatial variables contribute to a good fit of spatially explicit deforestation models, socio-economic

processes are often beyond the scope of these models. Such a low level of interest in the socio-economic dimension of

deforestation limits the relevancy of these models for decision-making and may be the cause of their failure to accurately

predict observed deforestation trends in the medium term. This study aims to propose a flexible methodology for taking

into account multiple drivers of deforestation in tropical forested areas, where the intensity of deforestation is explicitly

predicted based on socio-economic variables. By coupling a model of deforestation location based on spatial environ-

mental variables with several sub-models of deforestation intensity based on socio-economic variables, we were able to

create a map of predicted deforestation over the period 2001–2014 in French Guiana. This map was compared to a refer-

ence map for accuracy assessment, not only at the pixel scale but also over cells ranging from 1 to approximately 600 sq.

km. Highly significant relationships were explicitly established between deforestation intensity and several socio-eco-

nomic variables: population growth, the amount of agricultural subsidies, gold and wood production. Such a precise

characterization of socio-economic processes allows to avoid overestimation biases in high deforestation areas, suggest-

ing a better integration of socio-economic processes in the models. Whilst considering deforestation as a purely geo-

graphical process contributes to the creation of conservative models unable to effectively assess changes in the socio-

economic and political contexts influencing deforestation trends, this explicit characterization of the socio-economic

dimension of deforestation is critical for the creation of deforestation scenarios in REDD+ projects.
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Introduction

Modelling deforestation to identify the main socio-eco-

nomic and biophysical drivers of land-use change is a

complex and multidisciplinary field, involving eco-

nomic, environmental and geographical issues (De Pinto

&Nelson, 2007). Until the late 1990s, non-spatially expli-

cit models of deforestation were more common than

models integrating spatial variables into their concep-

tual framework (Angelsen & Kaimowitz, 1999), even

though the deforestation process is intrinsically a spatial

process. The development of more powerful computers,

associated with a widespread use of geographical infor-

mation systems (GIS) and associated land cover data

from remote sensing products, has democratized defor-

estationmodels taking into account spatial factors.

Creating a spatial model of deforestation implies cal-

culating probabilities of deforestation by spatial units,

often satellite-derived pixels. A major question deals

with the relevancy of predicting human-induced pro-

cesses at the pixel scale (Irwin & Geoghegan, 2001).

Whilst the pixel unit is convenient for creating defor-

estation maps or quantifying geographical variables,

such as elevation or distance to a given infrastructure,

many socio-economic or political variables must be

measured at a coarser scale (Agarwal et al., 2005), not

only due to technical constraints (cost of a census, for

example) but also to achieve a better consistency intrin-

sic to the variable measured. Indeed, demography,

gross domestic product (GDP) or percentage of employ-

ment in agriculture are aggregate variables and do not,

by nature, make sense over a fine continuous spatial

scale. Combining explanatory variables defined at very

different resolutions into a single model may lead to an

underestimation of the significance of aggregate socio-Correspondence: Camille Dez�ecache, tel. +594 5 94 32 92 17,
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economic variables, always available at much coarser

scales, in comparison with the pixel-based deforestation

process (Vieilledent et al., 2013). To cope with these

methodological problems, a clear distinction should be

made between the prediction of the location of defor-

estation (location component) and the prediction of its

intensity (intensity component) (Pontius & Millones,

2011; Vieilledent et al., 2013), as proposed by most soft-

ware used to build spatially explicit models of defor-

estation, such as Dinamica Ego (Soares-Filho et al., 2002,

2006), CLUE-S (Verbrug et al., 2002), GEOMOD (Pon-

tius et al., 2001) or Land Change Modeller (Kim, 2010).

In most deforestation software and associated stud-

ies, however, deforestation intensity is generally esti-

mated based on mean deforestation rates between two

dates (Mas et al., 2007) or is predicted based on rough

equations not explicitly related to socio-economic vari-

ables. As stated by Bax et al. (2016), ‘non-spatial vari-

ables as sociocultural and political drivers are often

beyond the scope of the models’. In two recent studies,

future deforestation scenarios were built following

assumptions made based on a good knowledge of eco-

nomic pressures or social and political tensions in Boli-

via and Brazil (Aguiar et al., 2016; Tejada et al., 2016).

When going through the modelling process, however,

predicted deforestation trends in the different scenarios

are simply expressed as a fraction of past observed

deforestation trends or established without an explicit

estimation based on socio-economic variables. This lack

of attention given to the explicit integration of the

underlying forces of land cover change may have con-

tributed to the failure of spatially explicit models to cap-

ture deforestation trends, as stated by Dalla-Nora et al.

(2014). In their review, they identified two main types

of spatially explicit land-use change models, each hav-

ing major drawbacks regarding the formulation of their

intensity component. Global models mainly focus on

major economic indicators such as economic or popula-

tion growth, but fail to include intra-regional drivers of

deforestation such as political or normative constraints,

or variables describing local human activities such as

logging or mining. On the contrary, intra-regional mod-

els mainly focus on local drivers of deforestation, often

implicitly integrated within past deforestation trends

used as baselines, with no consideration for major

underlying forces (Dalla-Nora et al., 2014).

The main objective of the present study is thus to

move forward socio-economically focused models of

deforestation, wherein much effort is made to fully

integrate the major social, economic and political

underlying forces of deforestation intensity, whilst

allowing these underlying forces to interact with local

direct deforestation drivers. Focusing on the processes

leading to deforestation rather than on deforestation

patterns themselves is necessary to provide useful

inputs for decision-makers (Brown et al., 2014).

Our location model aims principally at allowing for a

realistic representation of deforestation patterns in pre-

dicted maps through the use of a machine learning

algorithm (Brown et al., 2013). The model of deforesta-

tion intensity was divided between several sub-models,

each focusing on specific drivers of deforestation in

French Guiana over the period 2001–2014. We consid-

ered that to efficiently account for both local and global

forces of deforestation, such a zoning of the territory

was necessary. Indeed, we assumed that the difficulty

of integrating underlying global forces of deforestation

within intra-regional models was due to the fact that,

even if they are global, diffuse or aggregated over large

areas, these forces are not acting everywhere. Local

political, geographical and economic constraints thus

modify how and where global constraints can affect

deforestation trends, as can be illustrated with the

example of gold mining. Whilst increased gold prices

may be a major underlying cause of illegal gold mining

expansion in French Guiana, this variable is a driving

force of deforestation only in areas where gold deposits

are present, whereas gold prices have little to do with

the expansion of agriculture or urbanization. Here, local

constraints are such that gold mining only occurs where

gold deposits are located (geographical constraint) and,

eventually, where gold mining is authorized (normative

constraint, i.e. imposed by a superior authority).

In our modelling framework, global factors are there-

fore operating through a local filter, whether it is geo-

graphical or normative. If global factors are relevant in

a given area, they are taken into account in the intensity

model and can eventually interact with local factors of

deforestation. Such methodology adds many flexibility

to take into account drivers operating at very different

temporal scales. Gold mining activity, for example, is

expected to be very dynamic in time, following the

volatility of gold prices, whereas urban expansion

occurs over longer periods of time. Thus, models

should be able to take into account those differences

and also analyse short-term dynamics. This has recently

been made possible by the publication of yearly defor-

estation data (Hansen et al., 2013), which is critical

because deforestation is highly variable in time (Irwin

& Geoghegan, 2001) and often driven by commodities

booms (Angelsen & Kaimowitz, 2001).

This methodology allowed for the efficient assess-

ment of contrasting deforestation trends amongst the

different areas of the territory under pressure of differ-

ent drivers of deforestation. Strong relationships were

evidenced between socio-economic drivers, such as

population growth in parallel with the level of agricul-

tural subsidies, and deforestation, which we find
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indispensable in the formulation of comprehensive

future deforestation scenarios. As a comparison, we

built a null deforestation model following more classi-

cal methods, where socio-economic variables were spa-

tialized and included in the location component of the

model, whilst the intensity component of deforestation

was estimated based only on historical deforestation

rates. Such a comparison shows that our method is less

biased by the underestimation of low deforestation and

overestimation of high deforestation areas, suggesting a

better integration of socio-economic variables.

Materials and methods

Study area

French Guiana is a French overseas territory located in South

America and covering approximately 85 000 sq. km (Fig. 1a).

Along with its neighbouring countries belonging to the Gui-

ana Shield, French Guiana is characterized by a very high for-

est cover, more than 90% of its territory being covered by a

dense tropical rainforest (Rossi et al., 2015), and amongst the

lowest rates of deforestation in the world, with an annual

deforestation rate of around 0.03% (Hammond, 2005). Non-

forested areas are basically restricted to the coast (Fig. 1b),

where more than 90% of total inhabitants are concentrated.

The remaining villages are distributed along navigable rivers

on the borders with Suriname and Brazil. Deforestation in

French Guiana in the beginning of the 2000s was mainly due

to urbanization, infrastructure building, agricultural expan-

sion and gold mining. Low accessibility to the interior of the

forest (main roads are restricted to the coastal areas), and geo-

graphical and strong normative constraints de facto provoke a

separation of the different human activities inducing defor-

estation (Fig. 1c). Gold mining is restricted to a Greenstone

formation (Hammond et al., 2007), i.e. gold-bearing rocks,

located in remote areas of the forest and mostly accessed by

rivers or helicopters. Logging activities occur within the

Fig. 1 (a) Overview of the global location of French Guiana. (b) Forest cover and deforestation map. Forest and non-forest areas by 2000

are shown in white and black, respectively. Red areas correspond to main deforestation hot spots during 2001–2014 at 5-km resolution:

these are not fully deforested areas, but areas where deforested pixels at 30 m resolution were observed during this period. (c) Overview

of the location of the main activities leading to deforestation. Orange polygons roughly identify gold mining areas. The Permanent For-

est Estate is represented in green. Purple areas correspond to the location of most cities and villages where deforestation due to urban-

ization and agriculture is occurring. Grey polygons are integrally protected areas. Full-size maps are presented as (Figures S1 and S2).
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Permanent Forest Estate (PFE), where all other types of activi-

ties, including agriculture, are forbidden, although legal gold-

mining concessions may overlap with the PFE, as well as

small-scale illegal gold mining to a lesser extent. Agriculture

and urbanization could theoretically occur in the remaining

parts of French Guiana, but de facto are concentrated in the

few accessible coastal areas and along main rivers.

Urbanization and infrastructure expansion in French Gui-

ana are driven by a strong demographic increase: since 2009,

the mean annual growth has been 3.9%, six times higher than

that of Metropolitan France. Agriculture is also expanding in

response to this increasing population, but the territory

remains largely dependent upon imports (Hecquet & Mori-

ame, 2008). Integrally protected areas cover a great part of the

territory, mostly remote forested areas.

Conceptual approach

The methodology followed in the current study is based on a

distinction between the definition of a spatial deforestation

potential (location component of the model) and the estima-

tion of the quantity of deforestation (intensity component of

the model) (Dalla-Nora et al., 2014), both components being

built independently. Once the amount of deforestation has

been defined by the intensity component, the corresponding

number of pixels is sampled from the pool of pixels having

the highest deforestation potential from the deforestation suit-

ability map (hereafter called the deforestation risk map).

We first created a deforestation risk model based on poten-

tial spatial predictors of deforestation location over the whole

territory of French Guiana. The pool of spatial variables ini-

tially included within the location component was chosen

based on a thorough knowledge of the local causes of defor-

estation. At this stage, however, the variable selection proce-

dure was simply based on changes in the model’s error rate

when adding/removing an explanatory variable, rather than

on a theoretical model of the spatial drivers of deforestation.

To produce an accurate deforestation risk map, we used Ran-

dom Forest algorithm (Breiman, 2001) as the classifier, as it is

known for its strong predictive accuracy, robustness to noise

(Dietterich, 2000) and ability to take into account complex sets

of interactions and nonlinear relationships between deforesta-

tion and its predictors (Evans et al., 2011).

Concerning the intensity component of the model, which is

the main focus of the present study, we first listed the main

previously mentioned drivers of deforestation in French Gui-

ana: agriculture and urban expansion, gold mining and, to a

lesser extent, logging activities, mostly through the opening of

forest tracks, as only reduced impact logging is practiced in

French Guiana (Verger, 2014a). We then created a different

sub-model of deforestation intensity for each of these drivers,

considering them to be influenced by a different combination

of global and local factors, and spatially distributed differently

in relation to specific geographical and normative constraints

(Table 1) which allowed a zoning of the territory, where each

zone is associated with a specific human activity leading to

deforestation. Agriculture and urbanization were merged into

a unique sub-model, assuming that both drivers are mainly

influenced by population growth. Indeed, agriculture in

French Guiana is mainly meant for local markets consumption

or subsistence, with no expected dependence upon commodi-

ties prices. Similar to agriculture, logging activity is mainly

dependent on the small local demand for wood, and defor-

estation due to logging is not likely to be influenced by wood

prices. On the contrary, given the boom observed during the

beginning of the 2000s, from approximately 300 USD/ounce

in 2000 to close to 1900 USD/ounce in 2011 (Hammond et al.,

2007; Alvarez-Berrı́os & Mitchell Aide, 2015), we considered

gold prices to be the main underlying driver of deforestation

due to gold mining. Ideally, we would have included only glo-

bal exogenous underlying forces of deforestation in our differ-

ent sub-models, in interaction with local factors. Due to data

constraints or for better models consistency, however, we used

some endogenous variables within the logging and gold

mining sub-models. More details about this choice are given

in the corresponding parts of the Materials and methods sec-

tion.

A flowchart of the full model is shown in Fig. 2, showing

the two independent location and intensity components. Sub-

model parameters were estimated using simple and mixed

Table 1 Global and local deforestation drivers acting in each of the zones considered for the intensity sub-models, each zone being

defined by a specific set of drivers and some normative and geographical constraints

Sub-model Agriculture/urbanization PFE (logging) Gold mining

Potential global factors Population growth Demand for wood Gold prices

Normative filter Forbidden in integrally protected

areas and in the PFE

Authorized within the

boundaries of the PFE

Authorized only within gold-

mining concessions but illegal

gold mining is a major concern

Geographical filter Accessibility Accessibility

Presence of remaining

forested areas

Restricted to Greenstone areas

Local factors Rural or urban ways of life

Economic incentives for agriculture

Incentives to use wood for

construction

Intensity of the fight against

illegal mining

Explanatory variables

included in the sub-model

Population growth

Agricultural subsidies

Wood production Gold production

Explanatory variables effectively integrated within the different sub-models are also listed.
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linear modelling tools, for each of the three areas considered:

agriculture and urbanization areas, the PFE and gold mining

areas. Finally, for each relevant area of the territory defined,

the estimated number of pixels to deforest is sampled amongst

the pool of pixels of highest deforestation potential in the

deforestation risk map.

Location component

Input variables. Input forest cover and deforestation data—
Deforestation data collected between 2001 and 2014 were

based on yearly maps from Landsat images (Hansen et al.,

2013). After re-projection to EPSG:3857 and re-sampling at

30 m, a 75% crown cover threshold was applied to define

forested areas. A neighbouring filter was used to remove

noise in the form of isolated deforested pixels, most likely

caused by misclassification of satellite images (Mather, 2004)

or natural gap-phase forest dynamics. Moreover, large

patches of deforestation appearing within swampy areas and

mangroves were removed because natural processes, such as

coastal dynamics, were assumed to be the cause of these

observations.

Spatial explanatory variables—Input maps for spatial

explanatory variables (Table 2) were imported into the GIS

database as shapefiles and then rasterized to the extent and

Fig. 2 Flowchart of the full model computed, built based on two independent location and intensity components. The location compo-

nent is computed for the whole territory at once based on Random Forest algorithm, whereas the intensity component is composed of

different sub-models, each focusing on a different type of human activity leading to deforestation.

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3484–3500
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resolution of forest cover and deforestation data. When appro-

priate, distance rasters were calculated at a coarser scale to

avoid excessive calculation times.

Elevation and slope were not included in the model because

high values of both variables are found in very remote areas

where no-deforestation is likely to occur. However, elevation

data were used to compute the stream network with a mini-

mal watershed area of 0.5 sq. km, as applied in Cassard et al.

(2008). Streams were divided into three classes: small, inter-

mediate and large rivers, following Strahler classification

(Strahler, 1952). Indeed, different sizes of streams allow for

different types of human activities characterized by different

spatial deforestation patterns, from alluvial gold mining along

smaller ones, to human settlements close to larger rivers.

Three measures of distance to streams were then computed,

one for each stream size class. Distance to previously defor-

ested areas as a measure of spatial auto-correlation was

excluded to avoid collinearity with other variables, especially

distance to nearest road and city.

Random Forest modelling. Instead of classical statistical

tools like binary or multinomial logistic regression used in

numerous deforestation studies (Overmars et al., 2003;

Mahapatra & Kant, 2005), we preferred the use of the Ran-

dom Forest (RF) algorithm (Breiman, 2001) for computing

the location of deforestation. RF, similar to many other

ensemble learning algorithms, consists of a collection of

decision trees. Used for classification purposes, each tree

associates each sample unit (pixel) to a given class, and the

majority vote amongst all decision trees in the forest gives

the most probable class for each given pixel (Breiman,

2001). Ensemble learning algorithms have received growing

interest because of their strong prediction accuracy and

robustness to noise (Dietterich, 2000), as well as their ability

to take into account complex sets of interactions and nonlin-

earity between explanatory variables (Evans et al., 2011). RF

in particular is also interesting for its unbiased error rates,

known as out-of-bag (OOB) error rate, and its variable

importance estimation procedure (Rodriguez-Galiano et al.,

2012).

Sampling choices. Due to the extreme scarcity of deforesta-

tion in the area of interest, defining the appropriate sampling

method for building the calibration data set of the model was

a major issue. Randomly sampling n pixels may have led to a

great underrepresentation of the number of deforested pixels,

due to the high probability of sampling only not-deforested

pixels with a small n. Another option, as used by Vieilledent

et al. (2013), would have been to define a minimum sample

size nmin necessary to estimate observed deforestation rates

within a predefined confidence interval. In our case, however,

nmin was too large because of the extremely low deforestation

rates. Moreover, using an unbalanced sample of deforested vs.

not-deforested pixels would have strongly influenced the

model’s likelihood towards predicting the no-deforestation

dominant class. On the contrary, a deforestation model should

be able to accurately predict both classes without advantaging

one or the other. Drawing a parallel with species distribution

modelling, where presence data may be scarce in a given land-

scape, using a balanced sample between presence and absence

has to be preferred in the case of a RF classification (Barbet-

Massin et al., 2012).

In this study, we therefore chose to sample the same

amount of deforested and not-deforested pixels to obtain a

balanced sample where model calibration would penalize mis-

classification of deforestation as well as no-deforestation. To

avoid excessive data processing, we arbitrarily sampled n pix-

els corresponding to one-third of the amount of deforested

pixels during 2001–2014. This represents a final sample size of

approximately 130 000 pixels, half of which are deforested

and half not-deforested. Such a sampling method does not

affect the results of our models in terms of deforestation inten-

sity, as it is explicitly determined by the intensity model. Here,

we are not interested in the prevalence of deforestation, but

rather in the relative effect of spatial variables on the location

of deforestation. This explains why the extent of the PFE is

used as a binary variable in the location component of the

model and is also the focus of one of the intensity sub-models,

which could give the impression that our location and inten-

sity components are not fully independent. The PFE, however,

was not included as a spatial variable in the location model to

Table 2 List of spatial variables included in the location component of the coupled model

Variable name Resolution (m) Range Sources

Dist. to nearest road (Droad) 150 0–170 km ONF (2014)

Dist. to nearest stream following Strahler classification

Order 1–3: small (Dstrahler13) 150 0–2 km Horton (1945), Strahler (1952), USGS (2000)

Order 4–6: intermediate (Dstrahler46) 150 0–15 km

Order 7 or +: large (Dstrahler7+) 150 0–120 km

Dist. to closest city (Dcity) 150 0–170 km Verger (2011)

Dist. to Greenstone (Dgreen) 150 0–65 km BRGM (2014)

Protected areas (PA) 30 Binary DEAL Guyane (2015), Joubert (2015)

Permanent Forest Estate (PFE) 30 Binary Verger (2014b)

Small-scale gold mining authorizations (SS-GM) 30 Binary DEAL Guyane (2013b)

Permanently flooded areas (flood) 30 Binary DEAL Guyane (2013a)

Acronyms used in the text are indicated between parentheses next to variable names. The resolution corresponds to the precision

adopted for the rasterization of each spatial explanatory variable.
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simulate a decrease or increase in deforestation risk within the

PFE, but rather to enable us to consider different sets of inter-

actions between pixels inside this area compared to pixels out-

side.

Variable selection. Two measures of variables importance

are computed internally within the RF algorithm, as imple-

mented in the R-package randomForest (Liaw & Wiener, 2002):

the mean decrease in accuracy (MDA) and the mean

decrease in Gini index (MDG). The MDA indicates changes

in prediction accuracy when values of an explanatory vari-

able of interest are randomly permuted compared to obser-

vations. On the other hand, the MDG quantifies the decrease

in Gini impurity, or the increase in the homogeneity within

each child sub-sample. When a variable is chosen to split a

parent sample into two children sub-samples, and if such a

variable is important, it should contribute to a higher homo-

geneity in the children sub-samples, by efficiently discrimi-

nating two sets of observed values. MDG was found to be

more robust to small changes in the data set (Calle & Urrea,

2011) and was therefore used for the latter variable selection

step. Several simulations were led to check for the stability

of variables ranking.

In a first step, all explanatory variables were included in the

model. The least important variable following MDG was then

excluded and OOB error rates were compared to the former

model’s score. This step was repeated until the removal of the

least important variable no longer contributed to a decrease in

both error rates associated with deforestation and no-defores-

tation classes.

Deforestation risk map. Using a stack of rasters correspond-

ing to each explanatory variable and the RF model, a defor-

estation risk map was computed for all the area of interest.

We insist on the fact that the term ‘probability map’ is not

appropriate in our case for characterizing the potential of each

pixel to be deforested, as absolute values of predictions rely

on the initial balanced distribution of deforested and not-

deforested pixels within the calibration sample. As previously

mentioned, in the location model we are not interested in the

prevalence of deforestation, and as such, we prefer the use of

the expressions ‘deforestation risk’ or ‘deforestation potential’.

Rather than considering the absolute value of this index, one

should instead use it as a way to rank pixels by levels of defor-

estation risk.

Intensity component

Apart from the location component, an intensity component

was built to explicitly estimate, based on socio-economic vari-

ables characterizing relevant human activities in diverse areas

of the territory, the number of pixels necessary to sample from

the deforestation risk map to produce the final predicted

deforestation map. Contrary to the methodology set-up for the

location component, where all the territory was considered as

a whole, several sub-models of deforestation intensity were

built independently in three different areas considering that,

within each of these areas, very different human activities

were observed to be associated with a completely different set

of socio-economic explanatory variables (Fig. 3):

• gold mining areas;

• the PFE, where selective logging activities are taking place;

• agriculture and urbanization areas.

The temporal scales of such activities were also assumed to

be different: we focused on annual deforestation due to gold-

Fig. 3 Spatial flowchart of the coupled model building. (1) Map

of observed deforestation during 2001–2014 (top-left) is used to

create a sample of deforested and not-deforested pixels. Every

pixel of this sample is associated with corresponding value of

each spatial explanatory variable included in Table 2. This data

set is then used to calibrate a Random Forest model of the loca-

tion of deforestation, itself enabling the calculation of a deforesta-

tion risk map over the entire study area (top-right). (2) A zoning

of the country is determined, where each area corresponds to the

spatial extent of a specific group of human activities (middle,

agriculture and urbanization areas are displayed in blue, the Per-

manent Forest Estate in green and gold mining areas in orange

with a buffer applied for better visibility). Within each zone, a

specific deforestation intensity sub-model is built using appropri-

ate socio-economic explanatory variables. The results of these

sub-models are displayed in shades of red (bottom-left), from

low (light red) to high (dark red) intensities. (3) A deforestation

prediction map (bottom-right) is created by coupling the outputs

of the intensity model and the deforestation risk map. The corre-

sponding number of deforested pixels predicted by each sub-

model is sampled from the pool of pixels of highest deforestation

risk value. In this figure, both observed and predicted deforesta-

tion maps are a focus in the north-west part of French Guiana,

and deforestation was summed over a grid of 1-km cell size for

display purposes. Thus, grey areas indicate no-deforestation,

light red = low deforestation and dark red = high deforestation.
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mining, but on total deforestation over 2001–2014 due to log-

ging, urbanization and agriculture, because gold mining is

assumed to be a very dynamic process on a short time scale,

whereas the others are associated with longer-term socio-eco-

nomic processes.

Deforestation intensity is often expressed in terms of rates;

however, following Brown & Pearce (1994), only absolute for-

est cover loss per year should be used in deforestation studies,

because deforestation rates are more biased by unmeasured

geographical and historical factors, creating artificial differ-

ences between administrative subdivisions of very different

areas. For example, the district of Cayenne in French Guiana

covers only approximately 20 sq. km, whereas the district of

Maripasoula is nearly 1000 times larger. A similar-sized area

deforested in each district, for a similar reason, would be

interpreted very differently in terms of deforestation rates. To

avoid such biases, absolute deforestation (number of hectares

or pixels deforested) was modelled using mixed linear models

in the present study instead of deforestation rates, which are

often described by a binomial distribution. As previously

mentioned, a neighbouring filter was applied to remove iso-

lated pixels from the deforestation maps. This is particularly

important when dealing with huge administrative units such

as districts, where errors can accumulate over large areas and

sometimes exceed effective deforestation. When dealing with

gold mining and the effect of logging, however, such small-

scale activities can easily be excluded by the filter used. We

therefore chose not to filter the deforestation data for both

gold mining and logging sub-models. In the case of gold-

mining, the mask used to identify areas impacted by gold-

mining was precise enough to avoid the accumulation of noise

over large areas. In the case of logging, where forest sectors

correspond to areas of thousands of hectares, we controlled

for the noise in the data by including sector area as a linear

covariate in the model.

Gold mining. The gold mining area was defined using the

results of the remote sensing monitoring of gold mining for

the year 2014 in the Guiana Shield (Rahm et al., 2015) and

previous assessments in 2001 and 2008 (Debarros & Joubert,

2010), each study providing GIS layers of areas impacted by

gold mining. These layers were merged and used as a mask

for deforestation maps by Hansen et al. (2013), after creating

a 90-m buffer around each polygon to take into account

potential imprecision of the manual digitizing of gold-

mining impacts. Yearly deforestation due to gold mining

within the area of interest was extracted and a moving aver-

age over 3 years was calculated to avoid excessive variability

induced by a potential lag between the deforestation event

and its detection by satellites in case of cloud persistence.

These values were then used to calibrate a linear model of

yearly deforestation due to gold mining. According to Ham-

mond et al. (2007), gold production over the Guiana Shield is

highly correlated with gold prices. We assumed that the

level of gold mining activity is positively correlated with

deforestation and thus built a model using gold production

as an explanatory variable. We also tested the direct effect of

gold price on deforestation due to gold mining. A counter-

intuitive significant negative correlation between deforesta-

tion and gold prices was found. Even though gold produc-

tion is endogenous, whereas international gold prices are

exogenous and more interesting for modelling of deforesta-

tion processes, the sub-model including gold production as

the only covariate was selected. Indeed, a repressive policy

against illegal gold mining was launched in French Guiana

in 2002 (De Rohan et al., 2011) simultaneously with the

explosion of gold prices observed in the beginning of the

2000s. This policy may have interfered with the free develop-

ment of illegal gold mining activities in response to increas-

ing gold prices. This policy effect was impossible to

evidence here, however, due to collinearity between the

intensity of the repressive policy against illegal gold mining

and gold price trends over the period considered. In the

absence of official data at the scale of French Guiana, annual

gold production was downloaded from global data sets,

even though estimates are likely inaccurate due to the

importance of informal and illegal activities. Two sources

were found to give data on yearly gold production in French

Guiana, the first for the period 2002–2012 (Barrientos &

Soria, n.d.) and a second for 1992–2012 (24hGold.com n.d.).

When the data sets overlapped, we averaged yearly produc-

tion from both sources. The intensity model in the gold-

mining areas was formulated as follows:

GMi �NðbGMo þ bGMp � Prodi; r
2
GMÞ

where GMi is the scaled absolute deforestation (ha) due to

gold mining, Prodi is the estimated gold production (T) at year

i and bGMo and bGMp are the model parameters.

Permanent Forest Estate. Deforestation intensity was mod-

elled at the forest sector scale, corresponding to areas of very

different sizes (min = 0.3 sq. km, max = 1585 sq. km,

median = 117 sq. km). Because of the low impact of selective

logging in terms of effective deforestation, we modelled total

deforestation per sector over the entire period 2001–2014
instead of annual deforestation. Two explanatory variables

associated with logging activities in the PFE were initially

retained: the amount of wood extracted per forest sector dur-

ing the period 2001–2012 (ONF Guyane, 2012) and the amount

of new forest tracks and roads built within each sector during

2000–2013. This latter variable was estimated based on a

detailed map of the roads and tracks network of French Gui-

ana (ONF, 2014). Because of a strong collinearity between

those two variables (R2 = 0.88), we chose to use only the first

variable tested in the model, assuming that legal logging

development determined the extension of the track network

and not the opposite. This variable is endogenous, as it is

likely to be the consequence of population growth (increased

demand for wood) or increased incentives to develop wood

production and/or consumption. As these incentives are diffi-

cult to estimate, wood production itself is a useful explanatory

variable in the perspective of scenarios formulation. Such sce-

narios would then attempt to answer the question of how

much wood would be necessary to meet the demand for

wood, given an expected increase in population. As previ-

ously mentioned, the surface of each forest sector was used to

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3484–3500

TOWARDS SOCIO-ECONOMIC DEFORESTATION MODELS 3491



take into account noise in the data, in addition to the effect of

logging. The model of intensity in the PFE was:

PFEi �NðbPFEv � Vwoodi þ bPFEa �Areai; r
2
PFEÞ

where PFEi is the total deforestation (ha) between 2001 and

2014, Vwoodi is the volume (m3) of extracted wood, Areai is

the surface (ha) of each forest sector i and bPFEv and bPFEa are

the model parameters. We assumed no model intercept,

because for a sector of area equal to 0, deforestation is null, as

well as wood production.

Agriculture and urbanization areas. This zone corresponds

to areas not included in the gold mining and PFE zones

where other types of human activities can take place, such

as urbanization and agriculture, mainly. Socio-economic data

were available at the scale of each district, which corre-

sponds to the smallest administrative subdivision of the ter-

ritory. Deforestation per district was available for every year,

but associated socio-economic variables were not and were

thus assumed to be fixed during the whole period. As for

the gold mining area, moving averages over 3 years were

calculated in order not to overestimate the temporal variabil-

ity of deforestation.

We included average annual population growth between

1999 and 2009 (INSEE, 2016) and yearly agricultural subsi-

dies for land clearing provided during the period 2000–2014
(DAAF, 2015) as predictors. Population growth was used

instead of total population at year i because we assumed

that, in a context of high population growth, ‘new’ inhabi-

tants will need enough space to settle and will cause loss of

natural forested habitats. Discussions with a former official

of the local Department of Food, Agriculture and Forest

indicated that farmers were actually expecting public subsi-

dies to develop their activity, suggesting that the amount of

agricultural subsidies is exogenous and that agricultural

development would not have occurred the same way in the

absence of these subsidies. Agricultural subsidies are pro-

vided proportionally to the forested area each farmer

declares to convert to agriculture, so we assumed no inter-

district variability. A random effect was associated with

population growth, however, because we expected large

variability in induced deforestation amongst districts, fol-

lowing the type of population considered (urban or rural).

Other socio-economic variables (e.g. net income, % of jobs in

trade and services, % of jobs in agriculture) were tested in

interaction with population growth to modulate the effect of

demography following local contexts, but were discarded

after automatic model selection based on the AICc criterion

[dredge function, R-package MuMIn (Barton, 2015)]. To sum

up the hypothesis of the agriculture and urbanization sub-

model, we assumed that urbanization and subsistence agri-

culture were mostly driven by population growth (the

heterogeneity between those two situations being implicitly

taken into account by the random effect), whereas commer-

cial agriculture was boosted mostly by the amount of agri-

cultural subsidies provided. Connectivity to local markets

was not explicitly considered here due to the small size of

French Guiana and to the fact that Euclidean distance was a

poor estimate of connectivity. Although some districts may

be geographically close to main cities, the fact that they are

accessible only by boat or airplane makes them far from any

market. The final model was the following:

ADij �NðbADpc;j � PopChi;j þ bADas �AgrSubsi;j; r
2
ADÞ

with

bADpc;j �NðlADpc; r
2
ADpcÞ

where ADi,j is the deforestation (ha) in district j at year i, Pop-

Chi,j is the increase in population in district j at year i, Agri-

Subsi,j is the amount of agricultural subsidies in district j at

year i and bADpc,j and bADas are the model parameters. The

intercept was assumed to be null, as deforestation is expected

to be 0 when the population is stable and no agricultural sub-

sidies are provided.

Coupling and validation

Creation of the predicted deforestation map. A spatial flow-

chart of the modelling process is presented in Fig. 3. Observed

deforestation maps were used to independently compute a

deforestation risk map (step 1) and a deforestation intensity

map through the determination of a zoning of the territory

(step 2). In a final step, the n pixels with highest deforestation

risk on the deforestation risk map were sampled to create the

final predicted deforestation map, with n being explicitly esti-

mated by the intensity sub-models for each subdivision of the

different zones determined.

Validation of the predicted deforestation map. A confusion

matrix was built to compare the final deforestation prediction

map with observed deforestation, and several performance

indices were computed following definitions from the litera-

ture (Pontius et al., 2008; Liu et al., 2011; Vieilledent et al.,

2013): overall accuracy (OA), specificity (Spe), sensitivity [i.e.

true positive rates (Sen)], figure of merit (FOM) and Cohen’

kappa (K). The definition of each index is provided as (Tables

S1 and S2). We may, however, want to assess the accuracy of a

predicted map at a broader scale than the pixel scale, because

we are not interested in predicting the exact location of defor-

ested pixels, but rather areas under pressure. To do so, we

tested at which scale the model is accurate enough, based on a

series of grids of different cell sizes with widths ranging from

1 to 25 km, which are used to summarize predicted and

observed deforestation: plotting the amount of observed

against predicted deforested pixels within each cell indicates

how well predictions fit the observed data.

Comparing the coupled model with a null model

As a comparison, a null model was created with no explicit

determination of the intensity of deforestation using socio-eco-

nomic variables. Thus, by using a more classical method used

in numerous spatially explicit deforestation models, the inten-

sity component of the model simply corresponded to total

observed deforestation between 2001 and 2014. The variables
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included in the spatial component of the null model were the

same as the spatial variables involved in the location compo-

nent of the first coupled model, but additional socio-economic

variables (i.e. population growth and the amount of agricul-

tural subsidies) were included after rasterization at 30 m.

Gold production was discarded because yearly production is

not spatially dependent and could not be converted into a spa-

tially explicit factor, and wood production was removed dur-

ing the variables selection procedure.

The same balanced sampling method was applied, and a

single RF model was calibrated and used to create a deforesta-

tion risk map. n pixels with the highest value of deforestation

risk were sampled from the deforestation risk map, n being

calculated based on historical deforestation between 2001 and

2014.

The above-mentioned performance indices were estimated,

and a grid-based accuracy assessment was performed to com-

pare the performance of the coupled and null models.

All data processing and modelling was carried out using

the open-source software R (R Core Team, 2015) and GRASS GIS

7.0 (GRASS Development Team, 2015).

Results

Location component

Variable selection and importance. During the variable

selection procedure, permanently flooded area was the

only geographical variable excluded from the location

model. The most important variables were all distance

variables, with the exception of distance to streams of

smaller Strahler orders between 1 and 3. Binary vari-

ables were all of lower importance (Fig. 4).

Accuracy assessment of the Random Forest model. Out-of-

bag error estimates stabilized for a RF size of 100 trees.

Mean OOB error rate was 3.2%, with errors associated

with deforested and not-deforested pixels of 2.0% and

4.4%, respectively, over the approximately 130 000 pix-

els of the calibration data set.

Partial plots. Deforestation risk was found to be expo-

nentially and negatively correlated with distance to

road (Fig. 5). Overall, distance to city, distance to near-

est stream of Strahler order 7 or more and distance to

Greenstone areas were also negatively correlated with

deforestation risk, but with noisier relationships. In the

case of distance to city, for example, increasing distance

at a small scale increases the risk of deforestation, but

at a larger scale, getting much further from a city

decreases the deforestation risk. The pattern is less clear

regarding distance to streams of Strahler order between

4 and 6 and distance to nearest small stream of Strahler

order between 1 and 3, with a decreasing risk of defor-

estation for increasing distance at small scale, and a

contrary relationship at higher distance, without an

overall trend (Fig. 6). Concerning binary variables,

protected areas and the Permanent Forest Estate are

negatively associated with deforestation, whereas

small-scale gold mining authorizations slightly increase

the deforestation risk (Fig. 6).

Intensity component

Estimates of the parameters included in the three sub-

models forming the intensity component are reported

in Table 3. Yearly deforestation due to gold mining was

found to be significantly and positively correlated with

estimated annual gold production. The volume of logs

harvested during the period and the area of each forest

sector were both highly correlated with deforestation in

the PFE. Mean annual population change between 1999

and 2012 and agricultural subsidies for land clearing

between 2000 and 2014 were highly significant positive

predictors of deforestation. In one district, predicted

Fig. 4 Ranking of variables included in the location component of the coupled model, based on mean decrease in Gini index. [Colour

figure can be viewed at wileyonlinelibrary.com]
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deforestation was very small but negative, due to a

decrease in population over the period, and was

replaced by value zero for the model coupling step.

Standard error of the random slope associated with

annual population change was equivalent to the esti-

mate of the fixed parameter bADpc,j, suggesting a strong

inter-district variability.

Predictive performance

Visual assessment. A visual comparison between

observed and predicted deforestation maps between

2001 and 2014 provided initial insight into our model’s

performance. A focus on an agricultural and urbaniza-

tion hot spot showed that the predicted deforestation

map is quite accurate, with most pixels being correctly

predicted and mismatched pixels being closed to effec-

tively deforested pixels (Fig. 7a). In gold mining areas,

however, deforestation appeared to be more difficult to

accurately predict spatially (Fig. 7b).

Pixel-based performance indices. Overall accuracy and

Spe were biased by the extremely low rates of defor-

estation and thus uninformative. In addition, Sen,

FOM, and K, which take into account the ability of the

model to predict not only the majority class (i.e. no-

deforestation), were calculated. On the whole, the null

model performed slightly better than the coupled

model, wherein all indices were confounded (Table 4).

Grid-based performance assessment. Plots of observed vs.

predicted deforestation summed over different grid cell

sizes, from 25 to 1 km for each model (Fig. 8),

Fig. 5 Partial plot showing the relationship between continuous geographical explanatory variables (distance variables) included in

the location component of the coupled model and the log of the fraction of votes by the Random Forest model in favour of classifying a

pixel as deforested vs. not-deforested. Droad, Dcity and Dgreen stand for distance to nearest road, city and Greenstone area, respec-

tively. Dstrah7+, Dstrah46 and Dstrah13 stand for distance to nearest stream of Strahler order 7 or more, between 4 and 6 and small

streams between 1 and 3, respectively. The variables involved do not all have the same range, which is especially true for Dstrah4 and

Dstrah13.

Fig. 6 Partial plots showing the relationship between binary

geographical explanatory variables included in the location

component of the coupled model and the log of the fraction of

votes by the Random Forest model in favour of classifying a

pixel as deforested vs. not-deforested. SS-GM, PFE and PA

stand for small-scale gold mining authorizations, Permanent

Forest Estate and protected areas, respectively.
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Table 3 Parameter estimates of the three sub-models included in the intensity component of the coupled model

Intensity sub-model Intercept Slope SD of random slope Adjusted R-squared

Gold mining areas bGMo = 604.7*** (28.6) bGMp = 0.11** (0.03) 0.52

PFE bPFEv = 1.77*** (0.13)

bPFEa = 0.09*** (0.01)

0.76

Agriculture and

urbanization areas

bADpc,j = 0.29** (0.08)

bADas = 0.80*** (0.13)

0.30 Marginal = 0.37

Conditional = 0.96

SD, standard deviation; PFE, permanent forest estate.

P-values are shown as asterisks (***P < 0.001, **P < 0.01). Standard errors are presented in parentheses.

(a)

(b)

Fig. 7 Visual comparison of predicted vs. observed deforestation map over the period 2001–2014 for an agriculture and urbanization

hot spot (a) and a gold mining hotspot (b). Correct predicted pixels are displayed in green, red areas are false positive, and orange pix-

els are false negative.

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3484–3500

TOWARDS SOCIO-ECONOMIC DEFORESTATION MODELS 3495



suggested that the null model overestimates high defor-

estation areas compared to the coupled model, except

for in very small grid cell sizes, under 2-km resolution.

A focus on lower deforestation cells indicated an

opposite effect, with underestimation of deforestation

in the null model compared to the coupled model

(Fig. 9).

Discussion

Enriching deforestation models by including expert
knowledge: a case study in French Guiana

When focusing on socio-economic drivers of deforesta-

tion intensity, it appears necessary to create a typology

of zones within the area of interest, corresponding to

major differences in socio-economic functioning. To do

so, expert knowledge is indispensable and such zoning

must be meaningful. This work can only be carried out

in countries where a good level of governance is

assumed. On the contrary, the spatial zoning of the dif-

ferent drivers of the intensity model would remain

uncertain. A clarification of land rights and increased

law enforcement in forested countries, however, are

often considered to be a prerequisite to an efficient

implementation of the REDD+ mechanism (Karsenty &

Ongolo, 2012). As a consequence, we may expect that

methodology such as that developed here could be

applied to an increasing number of countries.

This necessity to create a zoning a priori is likely the

main limit of our methodology, especially around the

borders between two zones, because any leakage from

agricultural areas to the PFE, for example, would be

erroneously interpreted as increased deforestation due

to logging. Another example of the limits imposed by

the zoning is that we cannot predict deforestation due

to gold mining outside the rough areas that we know

have been previously impacted based on the gold-

mining mask used. Emergence of new gold mining

areas is thus impossible to model in our case, but it is

the consequence of numerous factors, such as discovery

of new deposits or depletion of old ones, location and

intensity of military interventions against illegal min-

ing, and new mining authorizations. These factors are

per se difficult to estimate, so it is reasonable not to try

to provide maps of emerging deforestation due to gold-

mining without a strong theoretical basis.

Table 4 Values of some common pixel-based performance

indices of coupled and null models: overall accuracy (OA), fig-

ure of merit (FOM), sensitivity (Sen), specificity (Spe) and

Cohen’s kappa (K)

Model OA FOM Sen Spe K

Coupled 99.5 31.6 47.8 99.8 47.8

Null 99.6 35.6 53.6 99.8 52.8

The null model outperforms the coupled model based on

FOM, Sen and K criteria, whereas OA and Spe are biased by

the low level of deforestation.

Fig. 8 Plots of predicted vs. observed deforestation (number of predicted/observed pixels per grid cell) summarized at different spa-

tial resolutions, at 25 km (a), 10 km (b), 5 km (c), 2 km (d), and 1 km (e and f). Blue circles and red triangles correspond to the coupled

and null models, respectively, and are associated with local regression curves of the same colour. The diagonal corresponding to a per-

fect prediction is represented by a black line in each plot.

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3484–3500

3496 C. DEZ �ECACHE et al.



Gold mining areas. The negative correlation we observed

between gold production and gold prices is counter-

intuitive compared to the results provided by Ham-

mond et al. (2007). Although we may wonder if esti-

mated gold production is accurate due to the

importance of illegal gold mining activities, this trend

may be influenced by the French military interventions

against illegal gold-miners, which were initiated during

the period of interest (De Rohan et al., 2011), explaining

why annual deforestation due to gold mining

decreased during the period whilst gold prices were

sharply increasing. This trend emphasizes the need to

assess deforestation at a larger scale to test the hypothe-

sis of deforestation leakages. Gold mining activities

could have been exported to neighbouring countries

(e.g. Suriname) because of the repressive context in

French Guiana, as occurred previously between Brazil

and French Guiana when the Brazilian government

began to regulate gold mining activity (WWF Guianas

et al., 2012).

The advantage of defining different intensity sub-

models is clear regarding the impact of gold mining,

where price volatility is high and susceptible to provok-

ing changes in gold production. Such a flexible method

allows the consideration of different human activities

responding differently in terms of scale and time, as in

the case of gold mining, which is a major improvement,

given the contribution of commodities to deforestation

trends (Angelsen & Kaimowitz, 2001). On the contrary,

using a purely spatial model, important drivers of

deforestation such as gold mining would be inconsis-

tently taken into account, because gold price is global

and cannot be spatialized at small scales.

Deforestation due to logging within the Permanent Forest

Estate. We estimated that approximately 1.8 ha were

deforested for each thousand cubic metres of wood har-

vested. This represents 1302 � 196 ha, or 40.3 � 6.0%,

of total predicted deforestation in the PFE, with the

remaining being explained by the size effect (i.e. noise

in the input deforestation maps). After rasterization of

the road layer, we estimated that approximately

500 km of new forest tracks were built within the PFE

during the period of interest. Assuming an average

track width of 30 m (i.e. one detected deforested Land-

sat pixel), this would correspond to approximately

1500 ha of deforestation directly due to main logging

tracks. This is close to our model’s estimates, although

in our model forest gaps were not taken into account as

well as log yards. Kleinschroth et al. (2016) reported a

road cover of 0.76% inside selective logging concessions

in Central Africa. Given the 52 000 ha of forest logged

over the period of interest, this would represent an area

of only 395 ha, much less than observed in the present

study. Miller et al. (2011), on two study sites in Tapajos

(Amazonia), found that reduced impact logging tech-

niques, which are also applied in French Guiana (ONF,

2016), provoked a decrease in canopy cover from 96%

to 88%. In our case, given the area logged during the

period of interest, this would represent around 4000 ha

Fig. 9 Plots of predicted vs. observed deforestation (number of predicted/observed pixels per grid cell) summarized at different spa-

tial resolutions, at 25 km (a), 10 km (b), 5 km (c), 2 km (d), and 1 km (e and f), with a focus on low deforestation areas. Blue circles and

red triangles correspond to the coupled and null models, respectively, and are associated with local regression curves of the same col-

our. The diagonal corresponding to a perfect prediction is represented by a black line in each plot.
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of lost canopy cover, in addition to areas directly

impacted by forest tracks opening. It is unlikely that

such logging gaps can be reliably detected in the data

set provided by Hansen et al. (2013), however, as selec-

tive logging is considered to be only marginally detect-

able using specialized detection algorithms, such as

those used by Peres et al. (2006), whereas the data set

used here has not been calibrated for this purpose. The

marginal impact of logging in terms of deforestation is

therefore low but statistically significant, although

likely underestimated due to data resolution con-

straints. Given that forest tracks are likely to be the only

measurable impact of selective logging and that forest

track planning is uncertain, it is likely more robust to

predict deforestation due to logging at the scale of the

forest sectors relying on explicit socio-economic vari-

ables, rather than to refer to high-resolution predicted

deforestation maps.

Deforestation in agriculture and urbanization areas. Total

predicted deforestation in agriculture and urbanization

areas districts was approximately 26 700 ha between

2001 and 2014. Of this amount, one-third corresponded

to the contribution of agricultural subsidies, whereas

17 800 ha, or around two-thirds of predicted deforesta-

tion, was explained by population growth. Agricultural

subsidies provided for land clearing reached an

amount of 3200€ per hectare planned to be converted to

agriculture. Given the 11M€ provided during the per-

iod 2001–2014, this would explain the deforestation of

approximately 3700 ha. Our estimation suggested an

effect 2.5 times stronger. The effect of the type of subsi-

dies used here (subsidies for land clearing) could have

been overestimated due to the absence of other possible

types of subsidies (e.g. financial support to agriculture

mechanization) in our model. The large standard devia-

tion of the random slope (Table 2) associated with pop-

ulation growth indicates a great heterogeneity of the

effect of demography on deforestation amongst agricul-

ture and urbanization areas. The predicted contribution

of each additional inhabitant was very different

between the densely populated capital, Cayenne, with

a value of only 0.009 ha deforested per year per addi-

tional inhabitant, and some rural districts where pre-

dicted deforestation reaches 1 ha per year per

additional inhabitant. This situation likely derives from

the coexistence of an officially declared agriculture, the

contribution of which to deforestation is captured by

the agricultural subsidies variable, with an expanding

informal agriculture captured by population growth.

The link between deforestation and population

growth has long been debated, often focusing on the

impact of shifting cultivation on deforestation in devel-

oping countries (Jarosz, 1993). Mixing geographical and

socio-economic variables at very different resolutions

in deforestation models has contributed to hiding the

effect of demography, in addition to the inherent com-

plexity of taking into account the diversity of conse-

quences of population growth following local socio-

economic and political contexts (Geist & Lambin, 2002).

Rapid population expansion in developing forested

countries, however, is now known to be a clear driver

of deforestation (Vieilledent et al., 2013). A model com-

parison with other rapidly-expanding countries in

terms of demography is not easy due to our uncommon

use of absolute measures of deforestation and popula-

tion growth, but the results of the present study con-

firm this conclusion of a positive correlation between

population growth and deforestation such as observed

in previous national or global studies (Pahari & Murai,

1999; Agarwal et al., 2005; Vieilledent et al., 2013). Even

so, much effort should be directed towards the explica-

tion of the random effect associated with population

growth, to understand which local forces might influ-

ence the way of life of future populations in the per-

spective of deforestation scenario formulation.

Although the amount of agricultural subsidies is a sig-

nificant exogenous contributor to deforestation, French

agricultural policy in French Guiana is de facto a

response to the high current population increase. Limit-

ing the level of economic incentives to agricultural

expansion to decrease deforestation may then create a

lack of job opportunities for local populations, which

could have unclear environmental consequences,

although youngsters in remote districts are likely to be

more interested in an urban way of life than in practic-

ing shifting cultivation or commercial agriculture.

Towards socio-economically focused deforestation
scenarios

Our coupled model succeeds in predicting the spatial

patterns of deforestation, whilst allowing the expres-

sion of significant socio-economic variables, which

determine its intensity. Compared to the null model,

the coupled model is less biased by overestimating high

deforestation and underestimating low deforestation

intensities (Figs 8 and 9), suggesting a more consistent

integration of socio-economic processes. Overestima-

tion of predicted deforestation around correctly pre-

dicted deforested pixels was previously mentioned by

Chowdhury (2006) and is explained by the strong con-

tribution of several highly important geographical vari-

ables, mainly distance to roads, which focuses much

deforestation around areas of high deforestation risk,

with socio-economic activities occurring in remote

areas remaining largely underestimated. This bias

explains why accuracy indices are higher for the null

© 2017 John Wiley & Sons Ltd, Global Change Biology, 23, 3484–3500
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model compared to the coupled model, which evi-

dences the need to assess the accuracy of models not

only at the pixel scale, but also at a wider scale, and

reinforces the necessity to distinguish the spatial from

the intensity processes, as mentioned by Vieilledent

et al. (2013).

In addition to their knowledge-intensive character,

we argue that models based on an explicit socio-eco-

nomically focused intensity component provide more

interesting outputs regarding socio-economic drivers of

deforestation. Moving forward spatially explicit socio-

economic models of deforestation is difficult because it

implies a strong understanding of the different drivers

of deforestation within a country or region, and

requires a large amount of data. It is critical, however,

to formulate useful future deforestation scenarios in a

REDD+ perspective. On the contrary, building a model

using principally geographical drivers ensures a good

fit, even if human activities are not properly under-

stood or taken into account, because of the strength of

road accessibility in shaping the development of a terri-

tory. Much effort must thus be directed towards a bet-

ter integration of global and local forces of

deforestation which, in our opinion, must be based on a

strong knowledge of the drivers of deforestation in the

areas considered. By operating a zoning of the territory

based on known geographical and normative con-

straints, we think that such a shift in deforestation mod-

elling methodologies is possible and is consistent with

a higher level of law enforcement, environmental gov-

ernance and land tenure security, factors which are pre-

requisites of the REDD+ mechanism.
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