Supporting Information

Additional Supporting Information may be found in the online version of this article:

Data S1. Figures.

Data S2. Description of the study sites.

Data S3. Details about the database construction.

Data S4. Illustration of the goodness of fit at each of the 58 study sites. The full dataset is plotted in the background (black). The foreground points and regression line represent the best-fit regression for local datasets.

Figure S1. Distribution of the 58 study sites in environmental space of altitude, mean annual temperature, mean annual evapotranspiration (ET, mm yr⁻¹), mean annual rainfall, and temperature seasonality (TS). The gray shades in the background represent the range of observed variation in currently forested areas in the tropical belt. Red dots indicate Latin American sites, green African sites, and blue Southeast Asian and Australian sites.

Figure S2. Among-site relationship of the individual coefficient of variation to bioclimatic variables (TS: temperature seasonality; CWD: climatic water deficit) across study sites, for Model 4. Each point represents the individual coefficient of variation CV(j) of a study site j, as inferred from Model 4. Point color and size are as in Fig. 3.

Figure S3. Among-site relationship of the site-level bias with bioclimatic variables (TS: temperature seasonality; CWD: climatic water deficit) for Model 4. Each point represents the Bias(*j*) for site *j* as inferred from Model 4. Point color and size are as in Fig. 3.

Figure S4. Among-site relationship of the form factor (ratio AGB $/\rho D^2 H$ with bioclimatic variables (TS: temperature seasonality; CWD: climatic water deficit). Each point represents the mean form factor of a study site (equivalent to the fitted parameter of Model 5). Correlation tests were performed on each dataset. In panel (a) P = 0.09 (Bartlett test); in panels (b) to (d), $P < 10^{-3}$, P = 0.08, $P < 10^{-3}$ (Spearman correlation). Point color and size are as in Fig. 3.

Figure S5. Forward selection for bioclimatic variables in Eqn (3). The first selected variable is TS (temperature seasonality), and including it results in a decline of the residual standard error (σ' , noted RSE in the ordinate axis) from 0.430 to 0.292. The second selected variable is CWD (climatic water deficit), and including it results in a decline of the RSE from 0.292 to 0.272. The third selected variable is PS (precipitation seasonality), and including it results in a further decline of the RSE from 0.272 to 0.243. Additional environmental variables induced comparatively very little further decline in RSE (a gain of 0.022).

Figure S6. Comparison between the pantropical allometric AGB Model 7 and a model in which Feldpausch *et al.* (2012) regional diameter–height equations were used. (a) Individual coefficient of variation at each site for both types of allometries. (b) Bias at each site for both types of allometries. Point color and size are as in Fig. 3. The outlying sites are labeled.

Table S1. Study sites and their characteristics.

Table S2. Description of the variables included in the dataset (n = 4004).

SUPPLEMENTARY MATERIAL

SM1. Figures

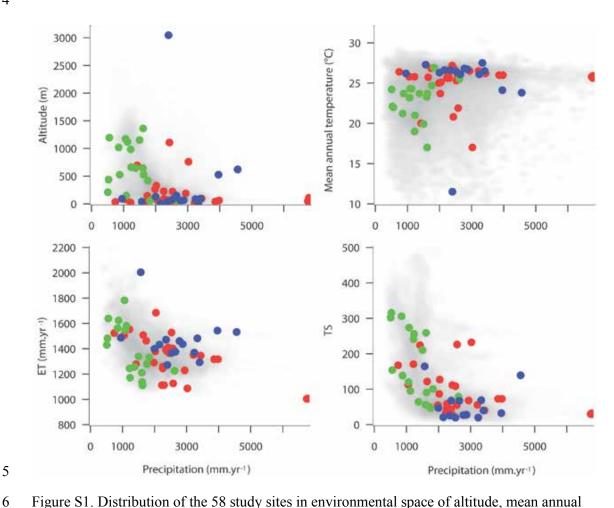


Figure S1. Distribution of the 58 study sites in environmental space of altitude, mean annual temperature, mean annual evapotranspiration (ET, mm yr⁻¹), mean annual rainfall, and temperature seasonality (TS). The grey shades in the background represent the range of observed variation in currently forested areas in the tropical belt. Red dots indicate Latin American sites, green African sites, and blue South-East Asian and Australian sites.

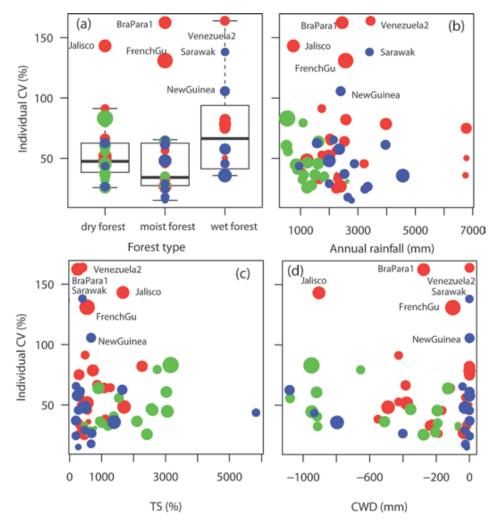


Figure S2. Among-site relationship of the individual coefficient of variation to bioclimatic variables (TS: temperature seasonality; CWD: climatic water deficit) across study sites, for Model 4. Each point represents the individual coefficient of variation CV(j) of a study site j, as inferred from Model 4. Point color and size are as in Fig. 3.

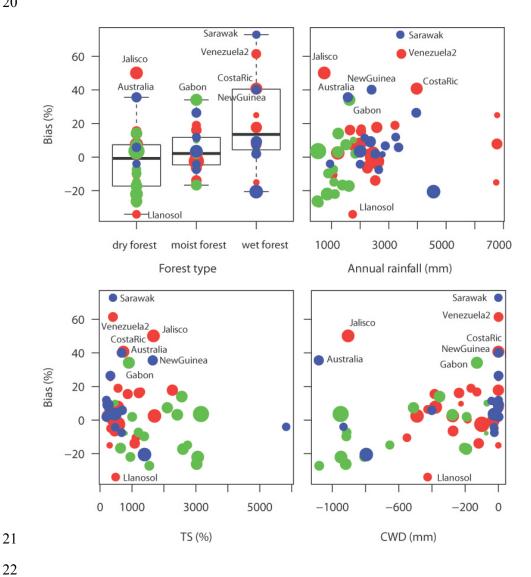


Figure S3. Among-site relationship of the site-level bias with bioclimatic variables (TS: temperature seasonality; CWD: climatic water deficit) for Model 4. Each point represents the Bias(*j*) for site *j* as inferred from Model 4. Point color and size are as in Fig. 3.

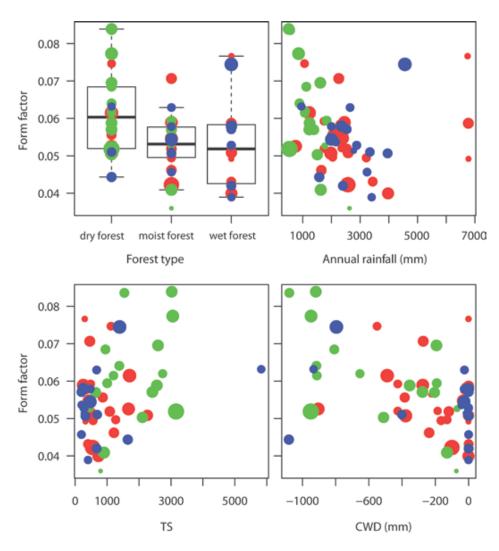


Figure S4. Among-site relationship of the form factor (ratio $AGB/\rho D^2H$) with bioclimatic variables (TS: temperature seasonality; CWD: climatic water deficit). Each point represents the mean form factor of a study site (equivalent to the fitted parameter of Model 5). Correlation tests were performed on each dataset. In panel (a) p=0.09 (Bartlett test); in panels (b) to (d), p<10⁻³, p=0.08, p<10⁻³ (Spearman correlation). Point color and size are as in Fig. 3.

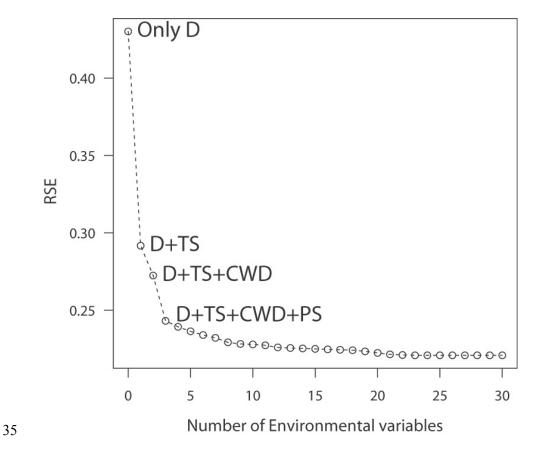


Figure S5. Forward selection for bioclimatic variables in Equation (3). The first selected variable is TS (temperature seasonality), and including it results in a decline of the residual standard error (σ ', noted RSE in the ordinate axis) from 0.430 to 0.292. The second selected variable is CWD (climatic water deficit), and including it results in a decline of the RSE from 0.292 to 0.272. The third selected variable is PS (precipitation seasonality), and including it results in a further decline of the RSE from 0.272 to 0.243. Additional environmental variables induced comparatively very little further decline in RSE (a gain of 0.022).

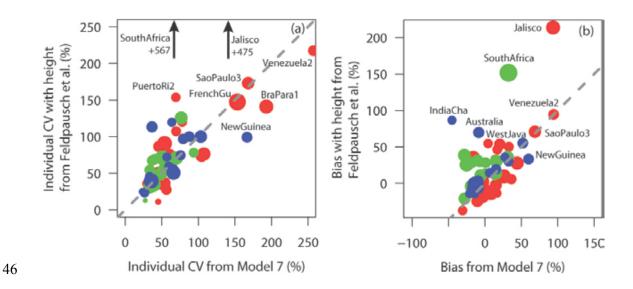


Figure S6. Comparison between the pantropical allometric AGB Model 7 and a model in which Feldpausch *et al.* (2012) regional diameter-height equations were used. (a) Individual coefficient of variation at each site for both types of allometries. (b) Bias at each site for both types of allometries. Point color and size are as in Fig. 3. The outlying sites are labeled.

SM2. Description of the study sites.

5

5

Table S1. Study sites and their characteristics.

Locality	No of trees	Available in 2005	Lat. (°N)	Long. (°E)	Locality	Forest type	Successio nal type	Mean annual temperature (°C)	Temp. Season- ality	Mean Annual Precip. (mm/yr)	Precip. Season- ality (%)	Altitude (m asl)	Evapo- transpiration (mm/yr)	Dry months	CWD (mm/yr)	Ref
Australia	46	YES	-12.48	131.05	Darwin, Northern Territory, Australia	dry forest	old growth	273	1670	1547	104	39	2004	8	-1075	[1]
BraMan2	123	YES	-2.5	-60.17	Manaus, Amazonas, Brazil	moist forest	secondary	272	431	2358	33	64	1378	3	-39	[2]
BraPara1	127	YES	-2.5	-48.13	Tomé Açu, Para, Brazil	moist forest	old growth	268	259	2439	70	37	1366	6	-286	[3]
BraPara3	21	YES	-1.37	-48.28	Belem, Para, Brazil	moist forest	secondary	267	312	2377	54	22	1393	4	-172	[4]
BraRond	8	YES	-8.75	-63.38	Samuel Reservoir, Rondonia, Brazil	moist forest	old growth	260	589	2258	63	91	1259	4	-227	[5]
Cambodia	34	YES	10.93	103.4	Thma Sa (formerly Cheko), Cambodia	dry forest	old growth	275	690	3339	86	14	1481	6	-402	[6]
Cameroon	5	NO	2.67	10	Campo Ma'an, Cameroon	moist forest	old growth	255	781	2611	59	53	1226	3	-71	[7]

Cameroon 3	59	NO	3.94	14.81	Mindourou 2, South-west Cameroon	moist forest	old growth	236	625	1380	47	647	1256	6	-202	[8]
CentralAf ric	12	NO	0.76	24.46	Yangambi, Democratic Republic of Congo	moist forest	old growth	248	480	1759	29	419	1281	2	-70	[9]
Colombia C1	60	NO	4.77	-77.18	Upland forest, departamento del Choco, Colombia	wet forest	old growth	257	287	6753	21	107	1007	0	0	[10]
Colombia G1	36	NO	1.64	-78.84	Swamp forest, departamento de Narino, Colombia	moist forest	old growth	256	330	2333	46	14	1113	2	-7	[10]
Colombia G2	10	NO	4.71	-77.18	Swamp forest, departamento del Choco, Colombia	wet forest	old growth	258	300	6737	21	50	1004	0	0	[10]
Colombia M1	24	NO	1.64	-78.89	Mangrove forest, departamento de Narino, Colombia	moist forest	old growth	256	331	2243	46	13	1113	2	-18	[10]
Colombia M2	9	NO	4.7	-77.26	Mangrove forest, departamento del Choco, Colombia	wet forest	old growth	259	323	6781	22	20	1004	0	0	[10]
CostaRic	97	NO	10.38	-83.98	Horquetas, Sarapiqui Costa Rica	wet forest	old growth	260	760	4042	28	62	1317	0	0	[11]

FrenchGu	360	YES	5.3	-53.5	Piste de Saint Elie, near Sinnamary, French Guiana	moist forest	old growth	259	542	2579	41	90	1402	2	-103	[12]
Gabon	101	NO	0.95	13.17	Makokou, Gabon	moist forest	old growth	231	889	1657	56	528	1110	5	-113	[13]
Ghana	39	NO	5.5	-2.67	Boi Tano Reserve, Ghana	moist forest	old growth	267	992	1842	58	61	1329	4	-188	[14]
IndiaCha	23	YES	25.05	83.21	Chakia, India	dry forest	secondary	262	5828	940	132	89	1487	9	-922	[15]
Jalisco	124	NO	19.5	-105.04	Chamela station, Jalisco state, Mexico	dry forest	old growth	261	1630	818	110	35	1524	10	-889	[16]
Kaliman1	23	YES	-0.4	116.45	Balikpapan, Kalimantan, Indonesia	moist forest	old growth	266	203	2146	29	10	1433	3	-43	[17]
Kaliman2	69	YES	-1.08	116.97	Sebulu, Kalimantan, Indonesia	wet forest	old growth	267	262	2377	20	38	1472	0	0	[18]
Kaliman4	40	NO	1.95	117.08	Berau Regency, Kalimantan, Indonesia	wet forest	old growth	264	204	2498	13	80	1366	0	0	[19]
Kaliman6	25	NO	-0.52	115.37	West Kutai, near Balikpapan, East Kalimantan, Indonesia	moist forest	old growth	261	197	3201	25	85	1369	0	0	[20]

Karnataka	189	NO	13.83	74.95	Kilandur Reserve Forest, Shimoga district, Karnataka State, India	wet forest	old growth	240	1392	4864	150	623	1533	7	-801	[21]
Llanosec	24	YES	7.43	-70.92	Llanos secondary, Venezuela	dry forest	secondary	268	483	1730	67	145	1463	4	-447	[22]
Llanosol	27	YES	7.43	-70.92	Llanos old- growth, Venezuela	dry forest	old growth	268	483	1730	67	145	1463	4	-447	[22]
Madagasc ar1	76	NO	-14.45	49.05	Bealanana, Analila, Madagascar	dry forest	old growth	190	2106	1497	91	1154	1338	8	-476	[23]
Madagasc ar2	90	NO	-20.45	47.6	Fandriana, Fiadanana, Madagascar	dry forest	old growth	178	2591	1714	74	1362	1138	6	-170	[23]
Madagasc ar3	87	NO	-24.96	45.23	Dry forest Manavy, Madagascar	dry forest	old growth	242	3027	505	84	210	1430	12	-921	[23]
Madagasc ar4	80	NO	-24.48	46.9	Moist forest, Beampingaratr a, Madagascar	dry forest	old growth	207	2502	1239	65	986	1244	8	-279	[23]
Madagasc ar5	90	NO	-22.44	46.99	Ivohibe, Sakaroa, Madagascar	dry forest	old growth	210	2555	1258	85	662	1171	8	-353	[23]
Malaysia	139	YES	2.98	102.32	Pasoh, Malaysia	moist forest	old growth	263	478	1987	30	129	1399	3	-26	[24]
Malaysia2	24	NO	2.98	102.32	Pasoh, Malaysia	moist forest	old growth	263	478	1987	30	129	1399	3	-26	[25]

MFrench G	29	YES	4.87	-52.32	Marais Leblond, Kourou, French Guiana	moist forest	old growth	265	558	3305	52	14	1351	3	-150	[26]
MGuadel	55	YES	16.27	-61.57	Grand Cul de Sac Marin, Guadeloupe	moist forest	old growth	257	1225	1613	41	13	1509	4	-321	[27]
Moluccas	25	NO	-3.05	129.43	Manusela National Park, Moluccas, Indonesia	moist forest	old growth	250	732	2701	29	147	1375	2	-1	[28]
Mozambi que	28	NO	-18.97	34.17	Nhambita, Gorongosa district, Mozambique	dry forest	old growth	246	2701	1048	89	148	1548	8	-676	[29]
NewGuin ea	42	YES	-6	145.18	Marafunga, New Guiena	wet forest	old growth	134	607	2216	38	3047	1271	0	-15	[30]
Peru	51	NO	-12.92	-69.27	South East Peru (Tambopata)	moist forest	old growth	253	1074	2546	52	222	1527	4	-115	[31]
PuertoRi	30	YES	18.32	-65.82	El Verde, Puerto Rico	moist forest	old growth	222	1258	2771	26	70	1685	3	-30	[32]
PuertoRi2	25	NO	17.98	-66.67	Ponce, Puerto Rico	dry forest	old growth	260	1130	997	56	82	1509	9	-486	[33]
SaoPaulo 3	75	NO	-23.99	-46.39	Restinga (sandy soil) forest, Sao Paulo, Brazil	wet forest	old growth	219	2264	2578	39	15	1125	0	0	[35]
Sarawak	21	NO	1.05	110.92	Sabal Forest reserve, Sarawak, Malaysia	wet forest	old growth	257	353	3344	23	96	1293	0	0	[36]
SouthAfri ca	469	NO	-23.83	31.1	Pompey, Kruger Park, South Africa	dry forest	old growth	221	3169	529	78	436	1481	12	-948	[37]

SouthBraz il1	151	NO	-9.86	-58.41	Cotriguacu, Mato Grosso, Brazil	dry forest	old growth	249	547	1979	74	263	1290	5	-376	[38]
SouthBraz il2	49	NO	-12.85	-58.93	Juruena, Mato Grosso, Brazil	dry forest	old growth	237	868	2026	73	328	1378	5	-382	[38]
SouthBraz il3	64	NO	-7.14	-55.38	Novo Progresso, Para, Brazil	moist forest	old growth	257	453	2268	66	228	1244	4	-273	[38]
Sumatra	29	YES	-1.48	102.23	Sepunggur, Jambi, Sumatra, Indonesia	wet forest	secondary	267	275	2876	33	64	1436	0	0	[39]
Sumatra2	11	NO	-3.32	103.9	Bendar Udara Pendopo, Sumatra, Indonesia	moist forest	old growth	268	276	2782	38	60	1460	2	-16	[20]
Tanzania1	38	NO	-6.33	35.78	Manyara, Tanzania	dry forest	old growth	221	1538	561	112	1195	1639	12	-1094	[40]
Tanzania2	42	NO	-9.78	37.92	Lindi, Tanzania	dry forest	old growth	238	1386	872	104	526	1624	9	-920	[40]
Tanzania3	38	NO	-6.35	30.95	Katavi, Tanzania	dry forest	old growth	246	949	1117	91	1118	1582	6	-824	[40]
Tanzania4	34	NO	-5.3	32.97	Tabora, Tanzania	dry forest	old growth	232	1201	1062	91	1174	1782	7	-917	[40]
Venezuela 2	40	NO	1.92	-67.03	San Carlos de Rio Negro, Venezuela	wet forest	old growth	262	415	3424	24	94	1344	0	0	[41]
WestJava	41	NO	-6.575	106.51	Bogor, West Java, Indonesia	moist forest	old growth	249	324	3966	20	526	1542	0	0	[20]
Yucatan	175	YES	20	-88	La Pantera, Yucatan, Mexico	dry forest	old growth	258	1678	1222	54	24	1554	8	-482	[42]
Zambia	141	NO	-15.25	29.83	Central Zambia	dry forest	old growth	221	3083	823	118	1017	1563	9	-968	[43]

3	
9	References

- Eamus D, McGuinness K, Burrows W (2000) Review of Allometric relationships for estimating woody biomass for Queensland, the Northern territory and Western Australia. Australian Greenhouse Office, technical report 5a.
- Nelson BW, Mesquita R, Pereira JLG, de Souza SGA, Batista GT, Couto LB (1999) Allometric regressions for improved estimate of S forest biomass in the central Amazon. Forest Ecology and Management, 117, 149-167.
- 3 Araújo, T. M., Higuchi, N. & Carvalho Jr., J. A. (1999). Comparison formulae for biomass content determination in a tropical rain forest site in the state of Pará, Brazil. Forest Ecology and Management, 117, 43-52.
- 4 Mackensen J, Tillery-Stevens M, Klinge R, Fölster H (2000) Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia, Brazil. Plant Ecology, **151**, 101-111.
- 5 Brown IF, Martinelli LA, Thomas WW, Moreira MZ, Ferreira CAC, Victoria RA (1995) Uncertainty in the biomass of Amazonian forests: an example from Rondônia, Brazil. Forest Ecology and Management, **75**, 175-189.
- Hozumi K, Yoda K, Kokawa S, Kira T (1969) Production ecology of tropical rain forests in south-western Cambodia. I. Plant biomass.

 Nature and Life in Southeast Asia, 6, 1-51.

i		tropical equations including biomass data from Africa Forest Ecology and Management, 260, 1873-1885.
	8	Ploton P, Momo S, Barbier N, Pélissier R, Bastin D, Couteron P, unpublished data.
i	9	Ebuy T, Lokombe JP, Ponette Q, Sonwa D, Picard N (2011) Allometric equation for predicting aboveground biomass of three tree species
•		Journal of Tropical Forest Science, 23, 125-132.
,	10	Alvarez E, Duque A, Saldarriaga J, Cabrera K, de las Salas G, del Valle I, Lema A, Moreno F, Orrego S, Rodrigues L (2012) Tree above-
		ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297-308
)	11	Ortiz, E. 1997. Refinement and evaluation of two methods to estimate aboveground tree biomass in tropical forest. Tesis para el grado de
)		Doctor of Philosophy. Ney York, USA; State University of New York. p 116.Also used in Joyce unpublished, and partly reported in Brown
		S (1997) Estimating Biomass and Biomass Change of Tropical Forests: A Primer. UN FAO Forestry Paper 134, Rome. 55 pp.
	12	Lescure JP, Puig H, Riéra B, Leclerc D, Beekman A, Bénéteau A (1983) La phytomasse épigée d'une forêt dense en Guyane française. Acta
		OEcologia/OEcologia Generalis, 4, 237-251.
ļ	13	Ngomanda A, Obiang NLE, Lebamba J, Mavouroulou QM, Gomat H, Mankou GS, Loumeto J, Iponga DM, Ditsouga FK, Koumba RZ,
;		Botsika Bobé KH, Okouvi CM, Nyangadouma R, Lépengué N, Mbatchi B, Picard N (2014) Site-specific versus pantropical allometric

Djomo AN, Ibrahima A, Saborowski J Gravenhorst G (2010) Allometric equations for biomass estimations in Cameroon and pan moist

equations: Which option to estimate the biomass of a moist central African forest? Forest Ecology Management, 312, 1-9.

	variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260, 1375-
	1388.
15	Bandhu D (1973) Chakia project. Tropical deciduous forest ecosystems. Pages 39-61 in L. Kerr (ed.), Modeling forest ecosystems. EDFB-
	IBP-737, Oak Ridge National Laboratory, Tennessee, USA.
16	Martinez-Yrizar A, Sarukhan J, Perez-Jimenez A, Rincon E, Maass JM, Solis-Magallanes A, Cervantes L (1992) Above-ground phytomass
	of a tropical deciduous forest on the coast of Jalisco, México. Journal of Tropical Ecology, 8, 87-96.
17	Ruhiyat D (1989) Die Entwicklung der standörtlichen Nährstoffvorräte bei naturnaher Waldbewirtschaftung und im Plantagenbetrieb,
	Ostkalimantan (Indonesien). Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen, Heft 35. Unpublished PhD
	dissertation.
18	Yamakura T, Hagihara A, Sukardjo S, Ogawa H (1986) Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetation
	68, 71-82, and Yamakura T, Hagihara A, Sukardjo S, Ogawa H (1986) Tree size in a mature dipterocarp forest stand in Sebulu, East
	Kalimantan, Indonesia. Southeast Asian Studies, 23, 451-478.
19	Samalca IK (2007) Estimation of Forest Biomass and its Error. A case in Kalimantan, Indonesia. Unpublished Msc thesis.

Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-André L. (2010) Wood density, phytomass

14

20

Mencuccini M et al. Unpublished results.

3		Google Earth canopy images. Ecological Applications, 22, 993-1003.
1	22	Hase H, Fölster H (1982) Bioelement inventory of a tropical (semi-) evergreen seasonal forest on eutrophic alluvial soils, Western Llanos,
5		Venezuela. Acta Oecologica, 3, 331-346.
5	23	Vieilledent G, Vaudry R, Andriamanohisoa SFD, Rakotonarivo OS, Randrianasolo HZ, Razafindrabe HN, Rakotoarivony CB, Ebeling J,
7		Rasamoelina M (2012) A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models.
3		Ecological Applications, 22, 572–583.
)	24	Kato R, Tadaki Y, Ogawa H (1978) Plant biomass and growth increment studies in Pasoh forest. Malayan Nature Journal, 30, 211-224.
)	25	Niiyama K, Kajimoto T, Matsuura Y, Yamashita T, Matsuo N, Yashiro Y, Ripin A, Kassim AR, Noor NS (2010) Estimation of root biomass
l		based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. Journal of
2		Tropical Ecology, 26 , 271-284.
3	26	Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove
1		ecosystems: new data from French Guiana. Oecologia, 115, 39-53.
5	27	Imbert D, Rollet B (1989) Phytomasse aérienne et production primaire dans la mangrove du grand Cul-de-Sac Marin (Guadeloupe, Antilles

Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai SN, Couteron P (2012) Assessing aboveground tropical forest biomass using

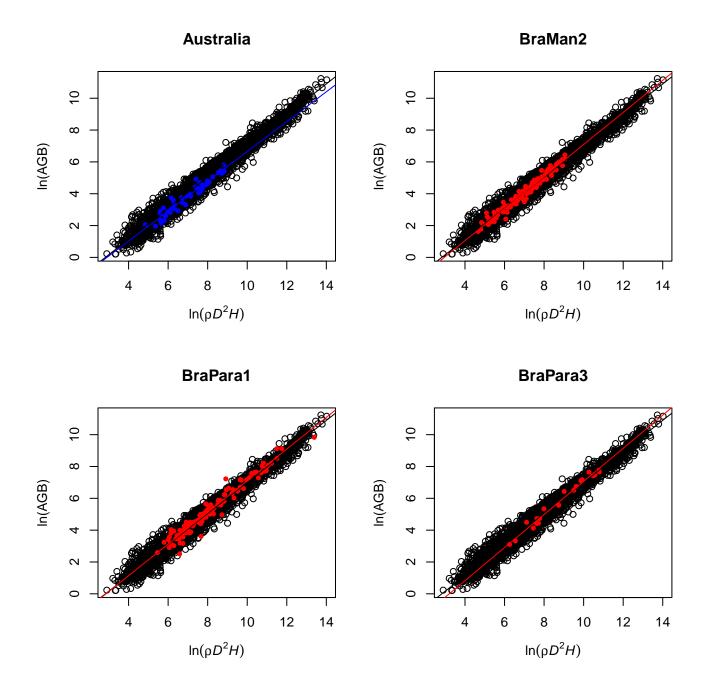
21

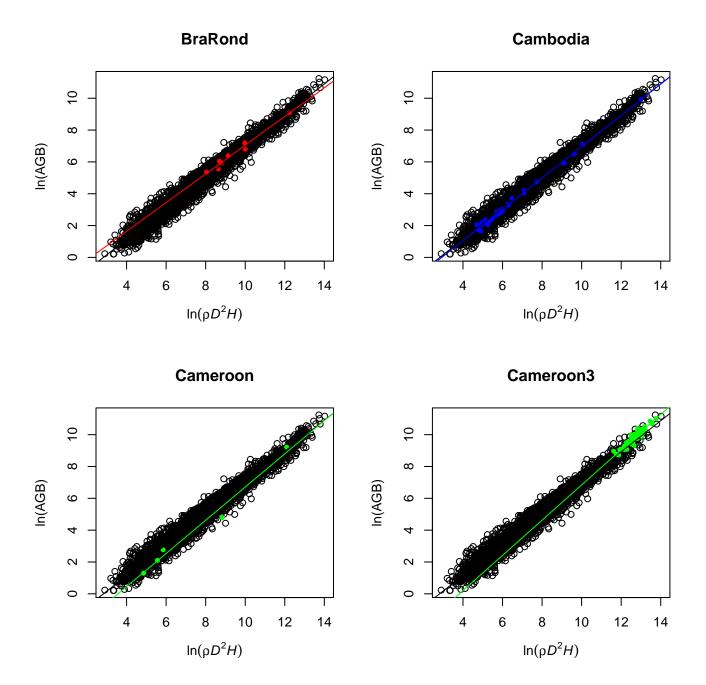
françaises). Bulletin d'Ecologie, 20, 27-39.

3		Moluccas, Indonesia. Msc report, Utrecht University.
)	29	Ryan CM, Williams M, Grace J (2011) Above-and belowground carbon stocks in a miombo woodland landscape of Mozambique.
)		Biotropica, 43, 423-432.
l	30	Edwards PJ, Grubb PJ (1977) Studies of mineral cycling in a montane rain forest in New Guinea. I. The distribution of organic matter in the
2		vegetation and soil. Journal of Ecology, 65, 943-969.
3	31	$Goodman\ RC,\ Phillips\ OL,\ Baker\ TR\ (2013)\ The\ importance\ of\ crown\ dimensions\ to\ improve\ tropical\ tree\ biomass\ estimates.$
1		Ecological Applications, in press.
5	32	Ovington JD, Olson JS (1970) Biomass and chemical content of El Verde lower montane rain forest plants. Pp. H53-H77 in Odum HT,
5		Pigeon RF (eds.) A tropical rain forest: a study of irradiation and ecology at El Verde, Puerto Rico, volume TID 24270. Clearinghouse for
7		Federal Scientific Technical Information, Springfield, Virginia.
3	33	Brandeis TJ, Delaney M, Parresol BR, Royer L (2006) Development of equations for predicting Puerto Rican subtropical dry forest biomass
)		and volume. Forest Ecology and Management, 233, 133-142.
)	34	Burger DM, Delitti WBC (2008) Allometric models for estimating the phytomass of a secondary Atlantic Forest area of southestern Brazil.

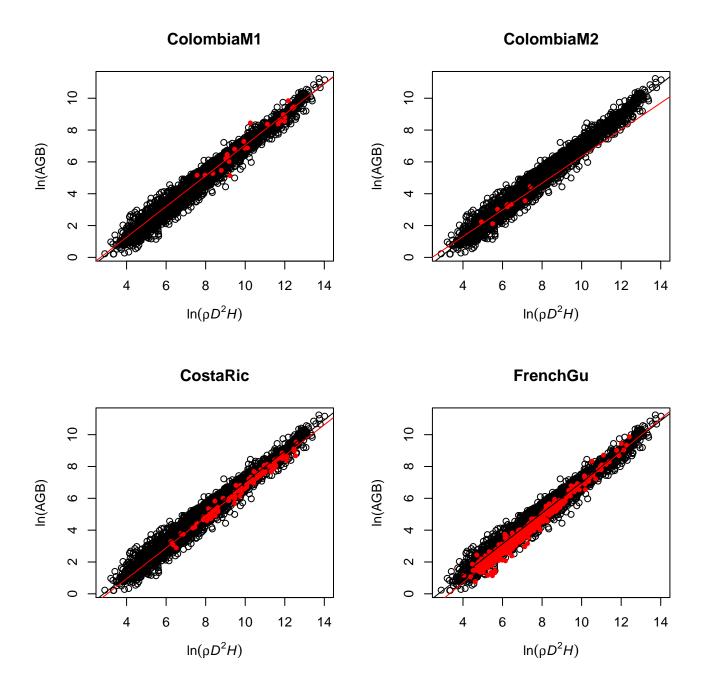
Biota Neotropica, 8, 131-136.

Stas SM (2011) Aboveground biomass and carbon stocks in a S forest in comparison with adjacent primary forest on limestone in Seram, the


3		143-153.
1	36	Kenzo T, Furutani R, Hattori D, Kendawang JJ, Tanaka, S, Sakurai K, Ninomiya I (2009) Allometric equations for accurate estimation of
5		above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia Journal of Forest Research, 14, 365-372.
5	37	Colgan MS, Asner GP, Swemmer T (2013) Harvesting tree biomass at the stand level to assess the accuracy of field and airborne biomass
7		estimation in savanna. Ecological Applications, 23, 1170-1184.
3	38	Nogueira, EM, Fearnside PM, Nelson BW, Barbosa RI, Keiser EWH (2008) Estimates of forest biomass in the Brazilian Amazon: new
)		allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256, 1853-1867.
)	39	Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for
l		predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146, 199-209.
2	40	Mugasha WA, Eid T, Bollandsås OM, Malimbwi RE, Chamshama SAO, Zahabu E, Katani JZ (2013) Allometric models for prediction of
3		above- and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310 , 87–101.
1	41	Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and
5		Venezuela. Journal of Ecology, 76 , 938–958.
5	42	Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico's


Burger DM, Delitti WBC (2010) Modelos preditores da fitomassa aérea da Floresta Baixa de Restinga, Revista Brasilineira de Botânica, 33,

35


Yucatan Peninsula. Forest Ecology and Management, 186, 125-132.

3	43	Chidumayo E (2002). Changes in miombo structure under different land tenure and use systems in central Zambia. Journal of Biogeography,
)		29 , 1619-1626.

