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Human degradation of tropical moist forests
isgreater than previously estimated
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Tropical forest degradation from selective logging, fire and edge effects is amajor
driver of carbon and biodiversity loss'®, with annual rates comparable to those of
deforestation®*. However, its actual extent and long-term impacts remain uncertain at
global tropical scale®. Here we quantify the magnitude and persistence of multiple
types of degradation on forest structure by combining satellite remote sensing data
on pantropical moist forest cover changes* with estimates of canopy height and
biomass from spaceborne® light detection and ranging (LiDAR). We estimate that
forest height decreases owingto selective logging and fire by 15% and 50%, respectively,
with low rates of recovery even after 20 years. Agriculture and road expansion trigger
a20%to30%reductionin canopy height and biomass at the forest edge, with persistent
effects being measurable up to 1.5 kminside the forest. Edge effects encroach on 18%
(approximately 206 Mha) of the remaining tropical moist forests, an area more than
200% larger than previously estimated’. Finally, degraded forests with more than 50%
canopy loss are significantly more vulnerable to subsequent deforestation. Collectively,

our findings call for greater efforts to prevent degradation and protect already
degraded forests to meet the conservation pledges made at recent United Nations
Climate Change and Biodiversity conferences.

Tropical moist forests (TMFs) have a major role in the provision of
global ecosystem services, including climate and water cycle regula-
tion, carbon sequestrationandbiodiversity conservation®. Despite their
importance, TMFs are disappearing at an alarming rate*. In addition,
degradation from selective logging, fires, edge effects or a combi-
nation of these disturbances is affecting forests and their capacity
to provide ecosystem services at a rate comparable to—and in some
years larger than—deforestation**'°, Here we define edge effects as
changesinforest structure and functionality that occur at forest edges,
driven by habitat fragmentation’. Furthermore, degraded forests are
more vulnerable to additional disturbances such as climate extremes,
reducing their potential resilience and threatening their long-term
future™*—for instance, Vancutsem et al.* showed that nearly half of
TMFs are ultimately deforested.

Reducing forest degradation has great potential to reduce carbon
emissions and increase carbon sequestration®, Yet, large uncertain-
ties remain in quantifying the contribution of forest degradation to
the global carbon fluxes (25-69% of overall carbon losses?). More
accurate estimates would directly support Reducing Emissions from
Deforestation and Forest Degradation (REDD+) activities under the
United Nations Framework Convention on Climate Change (UNFCCC'").
Despite the advancements in remote sensing capabilities for assessing
carbon fluxes associated with each type of disturbance ", a pantropi-
cal assessment of forest degradation on forest structureisstill lacking.

Furthermore, the depth of edge effect penetration within forestinteri-
orsislikely to be underestimated, mainly owing to the scarcity of forest
structure data across the tropics®.

The deployment of the Global Ecosystem Dynamics Investigation®
(GEDI) instrument on the International Space Stationin late 2018, which
specifically targets forest structure, offers a unique opportunity to
shedlight onforest degradation at pantropical scale. Here we provide
anassessment of the impacts of human-induced degradation on global
TMF structure and of the forest’s ability to recover toits pre-disturbance
condition. Specifically, building on a previous work®, we quantify in
a consistent manner at pantropical scale: (1) the extent of forest deg-
radation in 2022 taking into account edge effects; (2) the impact of
different types of disturbance on forest structural characteristics and
their persistence over time (over the period 1990 t0 2022); (3) the rates
of forest structure recovery after each type of degradation (selective
logging, fire or edge effect) and forest regrowth after deforestation; and
(4) the vulnerability of degraded forests to subsequent deforestation.

Within this scope, we combine a wall-to-wall dataset on forest deg-
radation, deforestation and regrowth dynamics derived from Landsat
imagery at 30 m spatial resolution* with spatially discontinuous esti-
mates of forest canopy structure from GEDI. We jointly analyse the
canopy height (RH98), that is, the top of the canopy or the nearest
tallest vegetationin the footprint; the height of median energy (RH50),
whichdescribes the vertical distribution of canopy elements and gaps®;
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Fig.1|Canopy heights ofintact, degraded edge forests and regrowths.

a-d, Canopy height (RH98) of intact forests (a), degraded forests fromlogging,
fire or natural disturbances (b), forest/non-forest edges (120 m width) (c) and
forestregrowths (d) in1.5° (each side is approximately 167 km) hexagon grid
cellsbetween30°Nand 30°S. Canopy heights are mean values calculated over
the period 2019-2022. Note that all the forest regrowth areasin ¢, regardless
oftheir age, are shown here (anin-depth analysis by age class is shown in Fig. 3).

and the aboveground biomass density (AGBD), which represents the
aboveground woody biomass per unit area®.

Spatial patterns of forest canopy heights

The analysis of more than 23 million sample footprints of GEDI data
over intact TMF—that s, areas with no signs of human activity detected
during the past three decades and located at least 3 km from forest/
non-forest edge (see Methods)—reveals regional and continental vari-
ability in forest structure, with the tallest canopies found inInsular Asia,
western Africaand western and eastern Amazonia (Fig.1laand Extended
Data Table1). Overall, canopy heights are higher in Asia (34.4 +10.7 m)
thaninAfrica (29.3 + 8.6 m) and in Americas (28.6+ 7.4 m) (mean = s.d.).
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Grid cells with fewer than 600 GEDIsamples or with no statistically significant
differencesin canopy height betweenintactand non-intact forests were
masked (Welch two-sided t-test. P< 0.05).100%, 99% and 99% of the hexagons
for degraded, edge and regrowth forests, respectively, were statistically
significant. nrepresentsthe totalnumber of GEDI sample plots for each forest
cover type (Supplementary Fig. 2). Summary statisticsof RH98 and AGBD are
showninExtended Data Tablel.

Similar results are found for AGBD (370.8 + 205.2 Mg ha™ in Asia,
225.5+110.9 Mg ha™ in Africa and 239.5 +129.9 Mg ha™ in Americas;
Extended Data Fig. 1). These results support previous observations®
showing that intact tropical forests in Asia, which are typically domi-
nated by hardwood wind-dispersed species, show a higher frequency
of large and tall trees (those with RH98 greater than 30 m) compared
with Africa and South America (Supplementary Fig. 1).

We found lower RH98 and AGBD values for the three types of dis-
turbed forests consideredin our study compared with intact forests. We
find that the minimum difference betweenintact and degraded forests
is10 m for mean RH98 and 122 Mg ha™' for mean AGBD (Fig. 1b). Forests
within 120 mto forest/non-forest edge show, on average, a1l m lower
RH98 and 150 Mg ha™ lower AGBD compared to intact forests with an



absence of emergent trees and a canopy height distribution dominated
by smaller trees (Fig. 1c and Supplementary Fig.1). Regrowing forests
on deforested land have, on average, a16 m lower RH98 than intact
forests, and an average AGBD of 80.4 + 87.3 Mg ha™ (Fig. 1d).

Magnitude and scale of edge effects

Potapov et al.” showed that fragmentation of intact forest landscapes
by agricultural or road expansioninitiates an edge effect (here referred
toasforest/non-forest edge effect) and a cascade of changes that lead
tolandscape transformation and loss of conservation values. Toalesser
extent, smaller canopy openings following selective logging and fire
couldalsobe asource ofimportant and yet unaccounted edge effects®
(herereferredto as forest/degraded forest edge effect). Here we show
the impacts of these two anthropogenic edge effects on the vertical
structure of the forest, which is caused by microclimatic alterations?
and leads to large-tree mortality®.

Wefirst assessed the scale and magnitude of forest/non-forest edge
effect on forest structure metrics in the vicinity of deforested lands
at varying distances to the forest edge (Extended Data Fig. 2). We
used twoindicators: the firstand more conservative is the distance at
whichthe RH98 of the edge forest reaches 95% of the RH98 of the intact
forest; and the second is the distance at which the differences in RH98
between edge and intact forest are not any more significant based on
an ANOVA test (Methods).

Forests, classified as undisturbed in the Tropical Moist Forest dataset
fromtheJoint Research Centre (JRC-TMF), showed adecrease in RH98
from the edge up to 350,400 and 1,500 minto the forest interiors
in America, Africa and Asia, respectively (red dotted lines in Fig. 2a
corresponding to first criteria). Edges have a significant effect on
canopy height for each continent, with maximum distance of effect
being largest in the Americas (second criteria). In fact we found sig-
nificant differencesinthe RH98 until 7 km distance to the forest edge
in the Americas (Tukey’s honest significant difference test, F=2,141,
P<0.0001) and1.7 kmin Africa (F =544, P< 0.0001) and Asia (F =582,
P<0.0001).0Onaverage, we estimated a20% reductionin RH98 within
the first approximately 200 m of the forest edge relative to the intact
forestinterior, associated withachangeinstructure and loss of tallest
trees (Fig. 2b). The largest extent of edge effects were detectable along
active and consolidated deforestation fronts of the Amazon (Brazil-
ian arc of deforestation, Peru and Colombia active fronts), in Borneo
and Sumatra coasts marked by high fragmentation levels, and on the
borders of the Congo basin (Fig. 2c). The variability in the magnitude
of change and extent of the edge effect within each continent s likely
to belinked to forest structure composition and environmental condi-
tions'®?2% and to different landscape configurations® (for example,
forest patch size and connectivity) and composition (for example,
proportionand type of agricultural land) that canincrease forest sen-
sitivity to edge effects™.

We detected larger scales of edge effects on AGBD in the Americas
(1,000 m) and Africa (750 m) and lower scales in Asia (1,020 m) com-
pared with RH98 (Extended Data Fig. 3). These results show that the
edge effect on biomass is far exceeding the previously measured'833
120 m. In total, the area with edge effects represented 18% (approxi-
mately 206 Mha) of the total forest area in 2022. This represents an
increase in area of 221% compared with the total area of forest edge
zones defined using the 120 m distance to the edge identified in previ-
ous studies.

We detect the cumulativeimpacts of selective logging and forest fire
uptoaround1.5 kminto forestinteriors and we quantify an additional
10% decrease in RH98 on average compared with the distribution of
forest affected by edge-desiccation effects only (grey distribution of
all forests in Fig. 2a). The increased tree mortality due to edge effects
triggers positive feedback loops with fires, which can penetrate up
to1kminto forestinteriors (red curve in Fig. 2a, inset). At the same

time, fragmentation makes the interior of the forest more accessible,
whichleads toincreased hunting and resource extraction®. Asaresult,
we found evidence of selective logging within 500 m from the forest
edge, exceptin Asia, where logging operations often occurred deeper
withinthe forestinterior (purple curveinFig.2a, inset).Inaddition, the
increased frequency of extreme droughts may directly increase tree
mortality and fireincidence at the edges®**, making the first kilometre
of the forest edge highly vulnerable to land use and climate change
impacts.

We also assessed the change in forest height in the vicinity of
degraded forests (forest-degraded forest edge effects). We observed
that canopy heightsin undisturbed forests near logged or burned for-
ests (thatis, within a120 mradius) were on average significantly lower
thaninintact forests by 15% and 22% for RH98, respectively (Extended
Data Fig. 4,22% and 32% lower on average for RH50). These results
are due not only to localized edge effects from degradation, but also
to the omission in the Landsat-based forest cover change datasets of
small-scale (<0.09 ha) and low-intensity disturbances at the interface
between undisturbed and degraded forests*®, highlighting the added
value of LiDAR-based assessment to compensate for the intrinsic limita-
tions of optical sensors in detecting these phenomena.

Our findings on the spatial extent of the two edge effects (from
both deforested land and degraded forests) were used to map the
remainingintact TMF landscapesin 2020 (Methods). This resulted in
smaller extents (-14%) compared with the 2020 assessment by Potapov
etal.” (502 Mha versus 426 Mha with our approach). Around 48% of
our assessment of intact forest landscape falls within the World Data-
base on Protected Areas (versus 53% estimated by Potapov et al.%).
Conversely, 57% (approximately 60%in Americas and Africa, and 28%
in Asia) of protected TMFs are mapped asintact forest, reinforcing their
importance for maintaining forest structure and functioning®. The
main differences between the two maps (Extended DataFig. 5) concern
mosaics of disturbed forest and deforested land in the JRC-TMF dataset
(excluded fromour approach but presentin Potapov et al.”).In Gabon,
we have larger estimates of forest cover compared with Potapov et al?,
mainly because undisturbed forest blocks are excluded intheir analysis.
Thisdiscrepancyis attributed to limited Landsatimagery before 2005
in the western part of central Africa, resulting in an underestimation
of historical disturbances such as selective logging, particularly in
the 2000s*.

These results demonstrate the relevance of the effects of forest edge
creation following tree cover loss at pantropical scale. These effects are
especially important in forests with high conservation value and will
contribute significantly to carbon emissions from tropical deforesta-
tion and degradation through induced edge effects®®.

Persistence of forest degradation effects

Assessing the persistence of forest/non-forest edge effects over timeis
critical tounderstanding the long-term consequences of deforestation
and fragmentation on the structure of forest remnants. Here we show
thatthereis nosignificant recoveryin RH98 (Fig.3a), RH50 and AGBD
(Extended DataFig. 6) during the 30 years following the creation of the
forestedge. Undisturbed forests within the first 120 m of the forest edge
exhibit on average a15% lower RH98 compared with intact forests from
thefirst year after edge creation. Evenlarger decreases of 25% and 30%
onaverage for RH50 and AGBD, respectively, show that the sensitivity
of RH50 and AGBD to edge-related desiccation is higher than that of
RH98. Degradation of forest edges from logging or fire triggered an
additional 30% decrease in RH98 on average (50% and 40% decrease
in RH50 and AGBD, respectively), with no evidence of recovery over
time, whichis corroborated by airborne laser scanning studies atlocal
scales®, This pattern s likely to be due to the long-term persistence
ofthe edge effects driven by changes in the growing conditions and the
exposure to additional anthropogenic disturbances'*.
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Fig.2|Spatial scale and magnitude of edge effects caused by deforestation.
a, Canopy height (RH98) of undisturbed forests (located at more than120 m
fromdegraded forests) and all forests showningrey (including undisturbed
and degraded forests) at various distances to the forest edge that separates
forest cover fromagriculturalland and other land covers. Inset, degradation
areadueto fireand selectivelogging calculated at various distances to the
edge. Thered dotted verticalline corresponds to the distance between the
forestedge and the pointat which 95% of intact forest RH98 is reached (red
horizontal dotted line): t0 350,400 and 1,500 m for America, Africaand Asia,
respectively. Vertical barsindicate the spatial s.d. The number of GEDIsample

Beyond 120 m from the forest edge, where effects of edge prox-
imity are reduced (see Fig. 2), we observed immediate effects and
post-disturbance recovery dynamics that differ considerably between
continents, disturbance types and forest structure metrics (Fig. 3b
and Extended Data Fig. 6). Selective logging effects on RH98 and
AGBD are higher in Asia (decreases of 20% and 50%, respectively)
compared with Americas and Africa (combined decreases of 10% and
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footprints foreach distanceto the forest edgeis reportedin Supplementary
Fig.3.Fvaluefromone-sided ANOVA;****P < 0.0001; NS, not significant. Tukey
posthoctestsare presented in Supplementary Data. b, Average distribution

of canopy heights of undisturbed forest (located at more than 120 m from
degraded forests) at various distances to the forest edge. ¢, Scale of the edge
effect, represented as the distance from forest edge at which RH98 reaches 95%
ofthe value of RH98 for intact forest. Colours for the undisturbed forest at
indicated distances from the forestedgeinacorrespondtothoseinb,c. Grey
cellsincrepresentareas where the accumulated deforestation (from1991to
2022)islessthan 2% of the forest areain1990.

30%, respectively), which can be explained by higher selective logging
intensity in Asia (30-40 m?® ha™ for the Amazon, 50 m*ha™ for Africa
and 270 m* ha'in Asia***!). Within 20 years since the last disturbance,
we found that logged forests recovered on average 25%, 15% and 27%
of RH50 in America, Africa and Asia, respectively, with slower recov-
ery for AGBD (average of 11% recovery across the three continents).
The absence of recovery trends in RH98 can be explained by the slow
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Fig.3|Impacts of forest degradationfromselective logging, fireand edge
effects. a-c, Long-termeffects on canopy height (RH98) from edge-desiccation
effects (a), degradation (fire orlogging) of edge forest (a), selective logging
(‘logged 1x’indicates anareahasbeenlogged once over the past 30 years),

fire (b) and secondary forests regrowing on abandoned deforested lands (c).
Resultsare reported as the percentage of intact forest canopy height (solid line)

regrowth of late successional, large and emergent trees'®, whereas for-
estunderstory dynamics, including tree removals, collateral damages
fromselective logging (such as dead fallen trees) and the fast regrowth
of pioneer and understory species, affect the average vertical distribu-
tion of plant material, captured by RH50, making this metric a robust
indicator of the long-term effects from degradation and subsequent
recovery*? (Extended Data Fig. 7). Recovery rates for AGBD are lower
compared withthose reported by Rappaport etal.” and Philipson et al.*?
showing anaverage of 25-32% recovery of AGBD 20 years after logging.
The difference in the average annual rates of recovery across continents
islikely to beinfluenced by logging intensity*’, forest composition and
climate conditions**.

Theimmediateimpacts from forest fires are much higher than those
from selective logging, with decreases of 35%, 40% and 60% in RH98
for the Americas, Africa and Asia, respectively, and decreases of 60%
in AGBD for the Americas and Africa and 80% for Asia. These results
are consistent with short-term changes in AGBD from logging and
fire reported in the literature®*. No recovery trend in RH98 or AGBD
was detected even ten years after the last disturbance, confirming the
long-lasting effects of fire on tree mortality and losses of AGBD**¥.
Manipulative studies of post-fire degradation in the Amazon showed

after normalizing the difference in canopy height (RH98) within each grid cell
betweenintactforestand each foresttype (degraded, edge forest and regrowth)
and age.Dataaremean RH98 + spatial s.d. GEDIsamples for each disturbance
typeandrelated timesince disturbance are reported in Supplementary Fig. 5.
Fvalue fromone-sided ANOVA; ****P < 0.0001. Tukey post hoc tests are
presentedin Supplementary Data.

strong understory vegetation regrowth under the remaining dominant
andtaller trees within 5years after the disturbance, resulting in partial
canopy closure* (70-80%). This vegetation dynamic is better captured
by changes in RH50 than by changes in RH98. The high variability in
recovery rates is probably due to different fire frequencies, intensity,
climate and forest-type-specific responses®.

In comparison with forest degradation, trends of forest regrowing
ondeforested land could be observed and quantified across continents
and forest structure metrics (Fig. 3c and Extended Data Fig. 6). After
10-15years, the regrowth plateaued at 60% of intact forest RH98 with
low growth rates (0.5% yr™, 0.7% yr™, and 0.9% yr™ for the Americas,
Africaand Asia, respectively). The regrowth for AGBD was on average
halfthat of RH50, reaching 43% (40%, 33% and 57% Americas, Africaand
Asia, respectively) of intact forest AGBD after 20 years of regrowing
rates, which are similar to those reported by Poorter et al.* (33%) using
fieldinventories, or by Heinrich et al.” (36-49%) using remote sensing
data. However, the slowdowninregrowth rates of AGBD after ten years
of regeneration may indicate that several drivers are affecting forest
growthand are not captured by Poorter et al.*® (Supplementary Data).
We found thatland use intensity through repeated deforestation events
andfire occurrences before forest regrowth may have negative effects
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onregrowth after 5-10 years (Supplementary Fig. 4; and corroborated
by previous studies), whereby fire legacies could decrease regrowth
rates by 20 to 75%, particularly in drier and water-deficient regions.

The fate of degraded forests

The stage of forest degradation s linked to the type, intensity and recur-
rence of past disturbances, as well as to the time since the previous
disturbance. Here we show that degradation also has a crucial role in
predicting future deforestation, whereby the likelihood of total defor-
estationand land use change increases with the degree of forest degra-
dation. Our results indicate that degraded forests followed by recent
deforestation (2020-2022) had significantly lower canopy heights and
AGBD compared to those not subjected to deforestation (Extended
Data Fig. 8 and Supplementary Fig. 6). On average, degraded forests
followed by deforestation experienced severe impacts, with average
reductionsinRH50, RH98 and AGBD of 60%, 45% and 65%, respectively.
These impacts are probably due to unsustainable logging and/or fire,
asshowninFig.3. Moreover, these structural parameters have alarge
spatial variability (+12.8%, +13.3% and +14.6% for RH50, RH98 and AGBD,
respectively), reflecting the complexity of the degradation processes
and underlying factors driving deforestation in the tropics®.

We found that forest relative heights (RH50 and RH98) and distance
tothe edge were strong predictors of the probability of deforestation
(Extended Data Fig. 9 and Supplementary Fig. 7). Degraded forests in
Americashowed, onaverage, a higher deforestationrisk thanin Africa
or Asia, as 50% of deforestation probability was reached when forests
lost 50% of their initial heights (60% in Africa and Asia). Furthermore,
proximity to the forest edge, recognized in previous research as akey
factor inassessing deforestation risk®?, showed complex interactions
with canopy height in degraded forests. This observation highlights
theinterplay between different factors such as degradation, exposure
to human activities and edge-desiccation effects within the first kilo-
metre fromthe forestedge, contributing to anincreased likelihood of
subsequent deforestation. However, within 120 m of the forest edge,
degradation had arole in enhancing subsequent deforestation only
inthe Americas, and no statistical differences in RH50, RH98 or AGBD
were found for the other continents (Extended Data Fig. 8 and Sup-
plementary Fig. 6).

Conclusions

Our study demonstrates that the integration of recent and spatially
sparse spaceborne LiDAR observations (GEDI), with long-term and
spatially continuous spaceborne optical datasets (JRC-TMF) provides
anovel approachtoassess forest degradation and recovery at the pan-
tropical scale. We show that the magnitude of degradation effects on
canopy structure are greater than previously reported, with a20-80%
decrease in canopy height and AGBD. The effects of edges on forest
vertical structure were previously assumed’ to extend no more than
about100 m. Our results show that this is asignificant underestimate,
and we measure edge effects up to around 1.5 kminto the forest inte-
rior, implying that the overall spatial impact of fragmentation across
the pantropical belt is severely overlooked by at least 200%. We show
that the cumulative impacts of selective logging, fires and edge effects
have significant long-term effects on the structure of global TMFs, but
as the 30-year period of our study is too short to observe a full recov-
ery of the forest structure for most types of forest disturbances and
regions, future studies should further address this question. Although
the current areas of fast-regrowing forests allow offsetting of around
25% of carbon loss from deforestation®, we found here that the full
recovery of forest structure after deforestation or degradation would
take a centennial timescale and may be slowed down by anthropogenic
factors. Finally, this study provides new insights for identifying the for-
ests thatare most vulnerable to agricultural expansion. Forest canopy
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structure, combined with disturbance history, is asignificantindicator
of deforestation risk and should be used to target forest monitoring
and prioritize conservationin highly degraded areas. This type of spa-
tially explicitinformation on tropical forest degradationis crucial for
implementing more effective forest-based mitigation policies® and
conservationactivities agreed under the UNFCCC and the UN Conven-
tion on Biological Diversity® (https://www.cbd.int/meetings/COP-15).
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Methods

Inthis study, we use the spaceborne GEDI® from the National Aeronaut-
icsand Space Administration (NASA) to analyse the extent of forest deg-
radation on canopy structure at pantropical scale, butits shortlifetime
limits long-term monitoring. To overcome this limitation, we combine
GEDIdatawithlong-terminformation onforest dynamics from Landsat
using aspace-time substitution strategy. While this approach hasbeen
used in previous studies®, it assumes that differences in neighbouring
land characteristics can be used as a proxy for changes over time and
that climate and vegetation remain relatively constant over the 20- to
30-year analysis period. For example, when studying forest recovery,
we assume that different height metrics from GEDI represent different
ages since the last disturbance.

Preparation of input datasets

TMF datasets. We use JRC-TMF, which provides information on changes
in humid forest cover from 1990 to 2022 derived from the Landsat
archive collection (more details on the methodology and accuracy
assessment in Vancutsem et al.*). Mangrove forests were excluded
fromthe analysis as periodical tidal floods affect the consistent estima-
tion of canopy height over time. Bamboo-dominated forests were also
excluded, as the dynamics of forest structure are related to seasonal
oroccasional defoliation rather than anthropogenic disturbances. We
used the JRC Transition Map and the Annual Change Collection that
capturethe TMF extent and the related disturbances on an annual basis
to derive the following classes.

Intact forests. Undisturbed forest (forest without any disturbance
observed over the Landsat time series) located at more than 120 m
from degraded forests and more than 3,000 m from the forest/non-
forestedge.

Degraded forests. Closed evergreen or semi-evergreen forests that
have beentemporarily disturbed for a period of amaximum of 2.5years
by selective logging, fire, or unusual weather events. We derived the
year since the last degradation from theJRC-TMF dataset used as a proxy
forforest recovery. To attribute forest degradation toits directdriver,
we first used the global forest cover loss due to fire dataset (GFC-Fire)
from2001to02021from The Global Land Analysis and Discovery (GLAD)
laboratory®. All certainties of forest fires were considered. Regarding
degradation dueto selective logging, we performed an extensive visual
interpretation and delineation of selective logging operations based
ontheir specific spatial features visible on theJRC-TMF Transition Map.
Theselected degraded forest pixels correspond to temporary logging
roads, logging felling gaps, decks, and skid trails. This dataset covers
Brazil, French Guiana, Guyana, Cameroon, Central African Republic,
Gabon, Congo, the Democratic Republic of Congo, Indonesia, Malay-
sia and Papua New Guinea. The managed forest concessions dataset
from the World Resource Institute was used to guide the collection of
polygons in central Africa and southeast Asia while the delineation in
the Amazon was generated from previous scientific experience**. An
independent visual interpretation of selective logging was performed
in order to analyse how the delineation influenced our results. This
sensitivity analysis showed small differences in the magnitude and
trends of logging impacts on forest structure without altering the sub-
sequent analysis and conclusions (Supplementary Fig. 8). It also proved
to be unbiased and robust when comparing changes in forest height
inthevicinity of forest degraded by selective logging (Supplementary
Fig.9). We created abuffer of 300 mradius (10 Landsat pixels) around
fire pixels to avoid an overlap between the two causes when analysing
impacts from selective logging alone. When looking at forest degra-
dationalone, we excluded pixels within the edge forest defined witha
conservative value of 120 m from the edge.

Forestedge. To compute forest edges, we considered undisturbed or
degraded forest pixels from the JRC-TMF Annual Change Collection
dataset for years spanning from 1989 to 2022. We applied a 5 x 5 pixel

moving window for all annual forest maps to remove isolated pixels
for both forest and non-forest classes using the sieve algorithm and
replace them with the value of the most frequent class within the mov-
ing window. For the analysis of forest edge effect penetration, we used
the extent of forest cover in 2022 to derive undisturbed forest edges
using edge widths varying from 60 m to10,200 m at differentintervals
(0-60 m, 60-120 m,120-240 m,240-420 m,420-720 m,720-1,020 m,
1,020-1,500 m, 1,500-2,040 m, 2,040-2,580 m, 2,580-3,120 m,
3,120-4,020 m, 4,020-5,100 m, 5,100-6,000 m, 6,000-7,200 m,
7,200-8,100 m, 8,100-9,000 m, 9,000-10,200 m) using the Euclidean
distance calculated from the non-forest class. These distances were
selected based on previous studies reporting on the scale at which
edge effects operate and affect microclimate® (up to 400 m), canopy
moisture levels? (up to 2.7 km), phenology® (up to 5-10km) and forest
biomass* (up to 1.5 km). The first 6 intervals of distances are centred
on the most recent and accurate evaluation of the extent of the edge
effect1832¢1 (-100-200 m). To focus on the scale of edge effects due to
deforestation, we discarded grid cells of 1.5° showing a value of accu-
mulated deforestation (1991-2022) compared to forest area in 1990
ofless or equal than 2% (estimates derived from JRC-TMF). To mitigate
the effects of canopy disturbance interactions between degraded and
undisturbed forests, we eliminated areas of transition using a buffer of
120 maround degraded forests. This distance corresponds to the area
initially affected by the felling of individual trees in selective logging
operations®>where localized edge effects are the highest®. To calculate
the age of forest edges, we adopted a120 m edge width, which consti-
tutes the threshold of significant AGBD changes observed in the trop-
ics””18, We produced forest edges from 1989 to 2022, masked natural
edges (transitions forest/water and forest/savannah), derived the year
of forest edge creation and computed the age of all edges classified as
forestin2022. We separated forest edges into undisturbed forest edges,
burned forest edges (where afire from the GLAD dataset occurred after
the year of forest edge creation) and logged forest edges (all other
types of degradation occurring after the year of forest edge creation).
Forestregrowth orsecondary forest. Forest regrowth or secondary
forest refers to a two-phase transition from moist forests to defor-
ested land to vegetative regrowth. A minimum duration of 3 years
(2020-2022) of permanent presence of moist forest cover is needed
to classify a pixel as forest regrowth to avoid confusion with other land
uses. Using the JRC-TMF Annual Change Collection, we calculated the
age of secondary forests (from 1to 32 years old), which may have an
uncertainty of 1year, depending on whether a deforestation event was
detectedatthe end of ayear or at the beginning of the next year. In case
oflate detection, the area will be classified as regrowing one year later
(if it does not show signs of permanent deforestation).

GEDI dataset. The GEDI mission uses a LiDAR deployed on the Inter-
national Space Station from April 2019 until March 2023. One of its
primary scientific objectives is to map forest structural properties
and understand the effects of vegetation structure on biodiversity. It
provides sparse measurements (hereafter sample plots or shots) of
vegetation structure, including forest canopy height® with a vertical
accuracy ofabout 50 cm, over an area defined by asampling footprint of
~25 mwidth. For our analysis, we used GEDIL2A®* Elevation and Height
Metrics (version 2) and GEDIL4A%* Above Ground Biomass (version 2.1)
which represent returned laser energy metrics on canopy height and
estimated AGBD for each 25 m diameter GEDI footprint. The footprint
dataaregeolocated and have an expected positional error® (that is, hori-
zontal geolocation accuracy) of 11 m. For each footprint, we extracted a
set of relative height (RH) metrics, the AGBD and the associated predic-
tion standard error (AGBD_SE). AGBD are reported as weighted aver-
ages, using the AGBD_SE as weight. Note that the estimation of AGBD
based on RH metrics from GEDIL2A varied considerably in performance
across the TMF domain, having a determination coefficient (R%) of 0.66
(meanresidual error (MRE) 0f10.4 Mg ha™), 0.64 (MRE 0f15.32 Mg ha™),



0.36 (MRE of 121.15 Mg ha™) and 0.61 (MRE of 8.17 Mg ha™) for South
America, Africa, Asiaand Oceania, respectively (further details on the
validation of the GEDI L4A are inref. 25).

RH metricsrepresent the height (inmetres) at which a percentile of
thelaser energyisreturnedrelative to the ground. RH98 corresponds
to the maximum canopy height (hereafter ‘canopy height’), which is
amore stable height metric than RH100. RH50 (also known as ‘height
of median energy’ (HOME)*) is the median height at which the 50th
percentile of the cumulative waveform energy returned relative to the
ground and has been identified as one of the LiDAR metrics with the
greatest potential for estimating structural characteristics in tropical
forests**. When validated against ground-based data, RH50 generally
exhibits a strong correlation with key structural variables, including
AGBD, stem diameter, and basal area®. Due to its strong dependence
on the vertical distribution of canopy elements and gaps within the
canopies and canopy cover, RH50 serves as a highly complementary
metric to RH98 for characterizing changes in canopy structure from
degradation® (see also Extended Data Fig. 7).

We sselected GEDI dataacquired from1January 2019 to 31 December
2022. Toselect the highest quality data, we filtered the GEDI data (both
GEDIL2A and L4A) by selecting only the observations collectedin power
beam mode and labelled them as good quality (quality flag equals 1),
thusavoidingrisks of having degraded geolocation under suboptimal
operating conditions (degrade flag equals 0). Additionally, we filtered
GEDI2A datausing only night acquisitions tolimit the background noise
effects of reflected solar radiation. We used the Shuttle Radar Topogra-
phy Mission (SRTM) information to exclude GEDIfootprints above 20°
slopestoavoid errorsin vegetation height. Steep slopes mightlead to
erroneous relative height metrics (especially over sparsely vegetated
areas), so applying our threshold of 20° is a conservative approach®.
Additionally, we filtered out GEDI footprints classified as water in the
Global Land Analysis and Discovery Landsat Analysis Ready Data quality
layer (ARD; https://glad.umd.edu/ard/home) or when a GEDI footprint
was located withinanurban areadefined by the Global Urban Dataset of
Florczyketal.®®. Finally, we excluded GEDI footprints with RH98 values
below 5 mtobe compliant withthe Food and Agriculture Organization
(FAO) definition of forest.

Further, we used the beam sensitivity information from GEDIL2A as
aproxy for signal-to-noise ratio and the ability of GEDI to penetrate the
highest canopy cover. For the intact and undisturbed forest classes,
we considered only shots with a beam sensitivity greater than 0.98,
while for the other classes (for example, degraded, edge and regrowth
forests), we used a beam sensitivity greater than 0.95, as previously
recommended®”®,

Combining datasets
Onthetemporalscale, we used separately yearly GEDI datato estimate
as accurately as possible the year since the last disturbance (that is,
degradation, forest edge creation or deforestation). Alldegraded and
edge forests were masked out if the date of disturbance or the year of
edge creation occurred during the GEDI acquisition period. A similar
step was performed for secondary forests when the year of regrowth
overlapped with the GEDI acquisition period. On the spatial scale, to
reduce the noise caused by GEDI geolocation errors, we applied amor-
phological (circular shape) filter of 35 m to the forest cover change
class of interest (intact, degraded, edge or regrowth), which resulted
inthe removal of single- small-patches of pixels. We thus ensured that
GEDI samples fell within the class of interest and avoided any partial
overlap. The extent of mapped forest change areas in the JRC-TMF
dataset was used to target the sampling of GEDI footprints and quantify
forest edge effects or canopy disturbance contagiousness between
degraded and undisturbed forests on forest structure still classified
as ‘undisturbed forest’.

To ensure robust and comparable observations of forest struc-
ture metrics across the multiple classes of forest cover change, we

considered a minimum of 600 GEDI samples for each 1.5° grid cell
(-167 km at the Equator; around a given point) and aminimum of 7 grid
cells per continent to derive continent-level statistics of forest RHs
and AGBD. When analysing the time series (Fig. 3 and Supplementary
Fig.5), aminimum threshold of 30 GEDI samples for each time step of
the trajectory—and aminimum of 600 GEDI samples for the sum of all
the time steps—within each grid cell was required. Note that the time
step does not refer to the GEDI date but to the JRC-TMF dataset where
the timing of degradation, regrowthetc. isassessed. Similarly, foredge
effect penetration, aminimum of 30 GEDIsamples for each distance to
the edge within each grid cell-and aminimum of 600 GEDI samples for
the sumofallthe distances—was required (see Fig. 2 and Supplementary
Fig.3).Metadataon the number of GEDIsamples for aggregated classes
of forest cover change is provided in Supplementary Fig. 2. Wall-to-wall
information of relative heights with high spatial resolution on large
scales, such as those produced by Lang” for canopy height only, will
increase in the future the quantity of data, thus improving the quality
and the robustness of the analysis.

The computation of canopy heights forintact, degraded, edge, and
regrowing TMFs at the1.5° grid cell level may vary due to local environ-
mental and anthropogenic factors (for example, soil and forest types),
leading to potential high variability in the reported canopy height
statistics. In order to reduce sampling bias in the structural variable
dataset, we randomly resampled GEDI observations 500 times within
each1.5° x 1.5° grid cell. We then summarized the random samples by
calculating the mean and standard deviation of each structural vari-
able, for each grid cell. Using this random sampling procedure based
on the iteration (500 times) of sampling 300 GEDI observations for
eachgrid cell, we found that theintra-grid variability of canopy heights
was not significant. The results of the random sampling procedure
show the low standard deviation for each class of RH98 distribution
and forest considered (that is, intact, degraded, edge and regrowth)
(Supplementary Fig.10).

Intact forest landscape assessment and comparison with
Potapov’s data product

We selected undisturbed forests in 2020 free from any disturbances
located at: (1) adistance higher than the scale of the forest/non-forest
edge effect identified at the grid cell level; and (2) more than 120 m
distance from degraded forests from the JRC-TMF dataset (identified
scale of the forest/degraded forest edge effect). Potapov’s map of
20207 was constrained to the extent of TMFs (excluding mangroves
and bamboo-dominated forests). We resampled our JRC-TMF-derived
intact forestlandscape (IFL) map from 30 mto1 km. We computed the
number of connected pixels (where each pixel contains the number of
4-connected neighbours) and thenrestricted themto values greater or
equal to 500 to obtain an approximation of forest patch area greater
than 500 km? (to match the definition of IFL of Potapov, with a minimum
areaof 500 km?). Other criteriain Potapov on minimum IFL patch width
(10 km) or minimum corridor width (2 km) were not implemented in
our approach.

Statistical tests

We performed aseries of one-way ANOVAs to test for differencesin the
impacts of edge effects at different distances and times on the long-term
recovery of the relative heights and biomass variables. ANOVAs were
performed separately for each continent. For the height variables
(RH50 and RH98), aseries of standard one-way ANOVAs were used. In
the analysesinvolving AGBD, we used amodified approach to propagate
the predictionstandard error associated withthe AGBD dataset values
which involved using a Monte Carlo approach (n=500). In brief, we
generated random noise that was added to the AGBD data. For each
iterationiwe generated anoise term, noise;, by drawingarandomvalue
from a normal distribution with mean y of 0 and s.d. equal to the pre-
diction standard error of the AGBD (g;) for each GEDI footprint. The
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noise can berepresented as:noise; ~ N(u, 03). We then perturbed the
AGBD values by adding the generated noise to the original dataset
(biomass,yigina,) for the ith iteration (biomass e ubed,;)- We then per-
formed an ANOVA for each iteration using the perturbed dataset and
recorded theresults. We subsequently examined the distribution den-
sity of the Fvalues. The results showed minimal variability suggesting
that observed differences are robust to uncertainty associated with
the AGBD values (Supplementary Fig. 11). For each ANOVA, we con-
ducted a series of Tukey honest significant difference post hoc tests
toassess significant differences between distance classes or time steps.
The significance level was set to P < 0.05.

Modelling deforestation risk

We assessed whether changes in RH50, RH98 and AGBD due to the
occurrence of forest degradation and the distance to the edge represent
anearly warningsignal of future deforestation. We retrieved GEDI foot-
prints of2019 sampled in forest degraded before 2018, followed or not
by deforestation (2020-2022), together with GEDIfootprints of 2020
sampledinforest degraded before 2019, followed or not by deforesta-
tion (2021-2022) and, footprints of 2021 sampled in forest degraded
before 2020 followed or not by deforestation (2022). We then separated
all samples based on their location within the first 120 m to the edge
or beyond. The probability of deforestation in degraded forests was
modelled using ageneralized linear modelling approach. We fitted two
models. One included only a single predictor, so that the percentage
ofintact forest height was the only predictor (Supplementary Fig.12).
The second modelincluded two predictors—thatis, the percentage of
intact forest height and the distance to the edge. The error structure
associated with the models was assumed to be binomial with a logit
link function. A given model takes the general form:

Y- B(m, i) )

E(Y) ~n;xm; and var(Y) ~ n; x m;x (1-1) (2)
logit(m) = n, ®)

n,=a+pX; 4

where Y;is the ith observation corresponding to the occurrence of
adeforestation event and SX;is a matrix of regression coefficients.

Models were fitted within a Bayesian framework. We fitted the models
using the programming language Stan via the brms package in the R
software for statistical computing”. Models were run using 4 chains
of 4,000 iterations each, with a warm-up of 1,000. We used the brms
default priors for our model parameters. Convergence was visually
assessed using trace plots (Supplementary Fig.13) and the Rhat values
(that s, the ratio of the effective sample size to the overall number of
iterations, with values close to one indicating convergence). Markov
chainMonte Carlo diagnostics showed agood convergence of the four
chains, while the posterior distributions are centred around one peak
value. The discriminatory ability of the models—that is, their ability
to successfully predict a deforestation event—was assessed using the
receiver operating characteristic (ROC) curve. We calculated the area
under the curve (AUC) and compared the values with the guidelines
provided by Swets’.

Cloud computing platform

All data extraction for this study was performed in Google Earth
Engine”, which provides the ability to compute GEDI footprint sta-
tistics and analyse the entire data records with high computational
efficiency. The GEE data catalogue contains processed L2A and L4A
GEDI data products—thatis, the rasterized versions of the original GEDI
products, with each GEDI shot footprint represented by a 25 m pixel.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data used in this study are from publicly available sources. GEDI
dataarearchived on NASA Distributed Active Archive Centers (DAACs).
GEDI's footprint-level Relative Height data were taken from the
GEDIO2_A height and elevation product, available at LPDAAC: https://
doi.org/10.5067/GEDI/GEDI02_A.002. GEDI's biomass data (AGBD) was
taken fromthe GEDIO4_A product also available at LPDAAC: https://doi.
org/10.3334/ORNLDAAC/2056. The JRC-TMF dataset canbe accessed at
https://forobs.jrc.ec.europa.eu/TMF/data.php#gee. The slopeis pro-
cessed using SRTM data downloaded from https://developers.google.
com/earth-engine/datasets/catalog/SRTMGL1_003. The Intact Forest
Landscape dataset for 2020 can be downloaded at https://intactforests.
org/data.ifl.html.Managed Forest Concessions dataset (accessed in Feb-
ruary 2022) canbe downloaded at https://data.globalforestwatch.org/
documents/gfw::managed-forest-concessions-downloadable/about.
The World Database on Protected Areas (accessed in October 2023) can
be downloaded at www.protectedplanet.net. Toensure the full repro-
ducibility and transparency of our research, we provide all of the data
analysed during the current study. Pre-processed data, post-processed
data, drivers of forest degradation, maps, codes and final figures devel-
oped inthis study are made publicly available and briefly described to
facilitate reproducibility and applicability. These data are permanently
and publicly available onaZenodo repository (https://doi.org/10.5281/
zenodo.11235618)™.

Code availability

To ensure full reproducibility and transparency of our research, we
provideall of the scripts used in our analysis. Codes used for this study
(GEEand R scripts) are permanently and publicly available ina Zenodo
repository: https://doi.org/10.5281/zenodo.11235618™.
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Extended DataFig. 3 | Spatial scale and magnitude of edge effects caused
by deforestation on AGBD and RH50. Average distribution of RH50 (panel a)
and AGBD (panel b) of undisturbed forests (located at more than120 metres
fromdegraded forests) and all forests (including undisturbed and degraded
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covers). Theinset captionrepresents the degradationareadueto fire (red
curve) and selective logging (purple curve) calculated at various distances to
theedge. Thered dotted vertical lineis placed ata distance equal to 350, 400,
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and 1500 mfor America, Africa, and Asia, respectively, and corresponds to the
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RH98isreached (red horizontal dotted line). Vertical bars indicate the spatial
standard deviation. Frepresents the F-Value in one-sided ANOVA and asterisks
indicate the level of statistical significance for ANOVA: *p < 0.05,**p<0.01,
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Extended DataFig. 5|Intact Forest Landscape mapping. Intact forest
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main author of thisstudy - approach). Dark grey grid cells presentno IFL area.
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tropical moist forest domain. We further excluded mangrove, forest conversion
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to allow comparisonwith our approach. (c) Differencein areabetween our
approach (i.e.JRC-derived/Bourgoin) and Potapov’s.
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of RH50/AGBD and vertical barsindicate the spatial standard deviation.
Frepresents the F-Valuein one-sided ANOVA and asterisks indicate the level

of statistical significance for ANOVA:*p <0.05,**p < 0.01,**p <0.001,

****p <0.0001, ns stands for not significant. Tukey post-hoc tests are available
insupplementary data. GEDIsamples for each disturbance type and related
timesince disturbancearereportedin SupplementaryFig. 5.
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2019, and nodisturbance was observed during the year of GEDI data acquisition.
Bigcirclesrepresent the averages, and the small dots are individual GEDI
samples. Adjusted p values are determined by two-tailed unpaired T test. The
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Extended Data Table 1| Summary statistics of canopy heights and AGBD for intact, degraded, edge forests and regrowths

i Number of GEDI o .
Forest type Continent bt Mean Standard Deviation Precision of the Mean
shots
RH98 AGBD AGBD AGBD
RH98 AGBD RH98 [m] RH98 [m]
[m] [Mg/ha] [Mg/ha] [Mg/ha]
Americas 16087545 25303980 28.563 239.512 7.440 129.876 0.002 0.026
Intact forests Africa 5880126 8986956 29.259 225.661 8.572 110.906 0.004 0.037
Asia 1523450 2519005 34.397 370.812 10.750 205.194 0.009 0.129
Americas 1728729 2791301 18.885 111.762 8.661 115.661 0.007 0.069
Degraded
Africa 704074 1099960 17.965 103.272 9.821 87.832 0.012 0.084
forests
Asia 1749092 2766798 20.173 142.991 10.718 128.692 0.008 0.077
Americas 4234908 6903997 19.253 116.365 9.037 117.970 0.004 0.045
Forest edges
Africa 2654101 4494123 19.799 121.980 10.052 96.790 0.006 0.046
(120m width)
Asia 1585174 2809352 21.139 147.523 10.971 133.289 0.008 0.080
Americas 594291 936495 13.944 68.972 7.765 94.260 0.010 0.097
Forest
Africa 67313 120529 14.299 73.730 9.234 73.817 0.036 0.213
regrowth
Asia 177179 306946 15.721 98.413 9.348 93.695 0.022 0.169

Number of GEDI shots and statistics (mean, standard deviation and precision) of grid cells by continent of RH98 and AGBD for intact forest, degraded forest, forest edge and forest regrowth.
The precision of the RH98 was obtained by computing the standard error of the RH98 values at footprint levels for each continent. The precision of the AGBD was obtained by computing
the standard error of the AGBD values at footprint levels for each continent. The mean, standard deviation and precision of the AGBD predictive standard error (AGBD_SE) are shown in
Supplementary Table 1. Note that issues linked to the non-randomness and spatial autocorrelation of GEDI samples and the propagation of the regression error associated to each AGBD

estimate are not integrated in this computation of summary statistics®””°.
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Data analysis Data analysis was performed on R (version 4.2.2).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

To ensure full reproducibility and transparency of our research, we provide all of the data analysed during the current study. The data are permanently and publicly
available on a Github and Zenodo repository (immediately upon publication or for reviewers).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Use the terms sex (biological attribute) and gender (shaped by social and cultural circumstances) carefully in order to avoid
confusing both terms. Indicate if findings apply to only one sex or gender; describe whether sex and gender were considered in
study design; whether sex and/or gender was determined based on self-reporting or assigned and methods used.

Provide in the source data disaggregated sex and gender data, where this information has been collected, and if consent has
been obtained for sharing of individual-level data; provide overall numbers in this Reporting Summary. Please state if this
information has not been collected.

Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based analysis.

Reporting on race, ethnicity, or | Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study

design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description This study consists in analyzing the spatial and temporal effects of human-driven forest disturbances (including forest degradation
due to selective logging, fire and edge effect and forest regrowth) on forest vertical canopy structure using around 39 million GEDI
measurements across the pan-tropical belt.

Research sample The research sample consists of LIDAR (GEDI) samples over different forest types from the JRC-TMF dataset (https://
forobs.jrc.ec.europa.eu/TMF/). It covers intact (~23 million sample plots), degraded (~4.5 million), edge (~8.5 million) and regrowing
(~1.1 million) tropical moist forests, representing large gradients of environmental, climatic and anthropogenic conditions of the
humid tropics. Regarding edge effects, the sample covers forest at various distances to non-forest edge (i.e. urban or agricultural
areas), varying from 60m to 10km. On the temporal aspects, the sample covers the last 33 years of forest disturbances and recovery
(1990-2022) across various combination of disturbance types representative of the main direct drivers of forest degradation in the
tropics (selective logging, fire and edge effect).
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Sampling strategy The sampling size depended on the availability of GEDI data (filtered to its highest quality). The resulting sampling sizes for each
forest dynamics and for each types of forest disturbances are reported in the manuscript as numbers and maps.

Data collection Data collection was based on the extraction of GEDI-derived canopy structure metrics (canopy height - RH98, height of median
energy - RH50 and aboveground biomass density - AGBD) from 2019-2022 for different forest types captured by the JRC-TMF
dataset. We created a fishnet grid of 1.5*1.5 degrees (~167km) covering the pantropical spatial domain. GEDI-derived metrics were
extracted within each grid cell of this fishnet system. Ancillary datasets on selective logging (visual delineation of selective logging
areas covering Brazil, French Guiana, Guyana, Cameroon, Central African Republic, Gabon, Congo, the Democratic Republic of Congo,
Indonesia, Malaysia and Papua New Guinea) and forest fire (Global forest loss due to fire from the Global Land Analysis and
Discovery) were used to refine the attribution of forest disturbance type.

Timing and spatial scale  The GEDI data was acquired from 2019 to end of 2022. It was analyzed on a yearly basis to ensure good precision in the assessment
of the years since the last disturbance, the years since edge creation, or the age of forest regrowth. Forest cover dynamics of
degradation, recovery and regrowth covered the period 1990-2022 coinciding with the monitoring period of forest cover change of
the JRC-TMF dataset. Deforestation risk analysis was done on tropical moist forest cover change between 2020-2022 (1-3 years after
the acquisition of GEDI canopy structure measurement). The spatial scale covers the tropical humid forest cover as defined by the
Food and Agriculture Organization of the United Nations.

Data exclusions GEDI data not passing the different quality filters (e.g. power beam mode, night acquisition, quality flags, slope less than 20 degrees,
not classified as urban or water, beam sensitivity higher than 0.95) or forest definition (canopy height more than 5m) were excluded
from the analysis. Mangrove forest were excluded from the analysis as periodical tidal floods will impact the consistent estimation of
canopy height over time. Afforestation was excluded from the analysis due to the limited number of GEDI samples.

Reproducibility All attempts to repeat the experiment were successful.
Randomization Not relevant, as we used all the data to perform our analysis.
Blinding Not relevant for this field (geoscience and forestry).

Did the study involve field work? |:| Yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

was applied-
Authentication Describe-any-atthentication-procedures foreach seed stock-tised-or-novel-genotype-generated—Describe-any-experiments-tused-to

assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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