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Human degradation of tropical moist forests 
is greater than previously estimated

C. Bourgoin1,7 ✉, G. Ceccherini1,7, M. Girardello1, C. Vancutsem1, V. Avitabile1, P. S. A. Beck1, 
R. Beuchle1, L. Blanc2,3, G. Duveiller4, M. Migliavacca1, G. Vieilledent5,6, A. Cescatti1 & 
F. Achard1

Tropical forest degradation from selective logging, fire and edge effects is a major 
driver of carbon and biodiversity loss1–3, with annual rates comparable to those of 
deforestation4. However, its actual extent and long-term impacts remain uncertain at 
global tropical scale5. Here we quantify the magnitude and persistence of multiple 
types of degradation on forest structure by combining satellite remote sensing data 
on pantropical moist forest cover changes4 with estimates of canopy height and 
biomass from spaceborne6 light detection and ranging (LiDAR). We estimate that 
forest height decreases owing to selective logging and fire by 15% and 50%, respectively, 
with low rates of recovery even after 20 years. Agriculture and road expansion trigger 
a 20% to 30% reduction in canopy height and biomass at the forest edge, with persistent 
effects being measurable up to 1.5 km inside the forest. Edge effects encroach on 18% 
(approximately 206 Mha) of the remaining tropical moist forests, an area more than 
200% larger than previously estimated7. Finally, degraded forests with more than 50% 
canopy loss are significantly more vulnerable to subsequent deforestation. Collectively, 
our findings call for greater efforts to prevent degradation and protect already 
degraded forests to meet the conservation pledges made at recent United Nations 
Climate Change and Biodiversity conferences.

Tropical moist forests (TMFs) have a major role in the provision of 
global ecosystem services, including climate and water cycle regula-
tion, carbon sequestration and biodiversity conservation8. Despite their 
importance, TMFs are disappearing at an alarming rate4. In addition, 
degradation from selective logging, fires, edge effects or a combi-
nation of these disturbances is affecting forests and their capacity 
to provide ecosystem services at a rate comparable to—and in some 
years larger than—deforestation4,9,10. Here we define edge effects as 
changes in forest structure and functionality that occur at forest edges, 
driven by habitat fragmentation7. Furthermore, degraded forests are 
more vulnerable to additional disturbances such as climate extremes, 
reducing their potential resilience and threatening their long-term 
future11–14—for instance, Vancutsem et al.4 showed that nearly half of 
TMFs are ultimately deforested.

Reducing forest degradation has great potential to reduce carbon 
emissions and increase carbon sequestration15. Yet, large uncertain-
ties remain in quantifying the contribution of forest degradation to 
the global carbon fluxes (25–69% of overall carbon losses1,2). More 
accurate estimates would directly support Reducing Emissions from 
Deforestation and Forest Degradation (REDD+) activities under the 
United Nations Framework Convention on Climate Change (UNFCCC16). 
Despite the advancements in remote sensing capabilities for assessing 
carbon fluxes associated with each type of disturbance17–21, a pantropi-
cal assessment of forest degradation on forest structure is still lacking. 

Furthermore, the depth of edge effect penetration within forest interi-
ors is likely to be underestimated, mainly owing to the scarcity of forest 
structure data across the tropics22.

The deployment of the Global Ecosystem Dynamics Investigation6 
(GEDI) instrument on the International Space Station in late 2018, which 
specifically targets forest structure, offers a unique opportunity to 
shed light on forest degradation at pantropical scale. Here we provide 
an assessment of the impacts of human-induced degradation on global 
TMF structure and of the forest’s ability to recover to its pre-disturbance 
condition. Specifically, building on a previous work23, we quantify in 
a consistent manner at pantropical scale: (1) the extent of forest deg-
radation in 2022 taking into account edge effects; (2) the impact of 
different types of disturbance on forest structural characteristics and 
their persistence over time (over the period 1990 to 2022); (3) the rates 
of forest structure recovery after each type of degradation (selective 
logging, fire or edge effect) and forest regrowth after deforestation; and 
(4) the vulnerability of degraded forests to subsequent deforestation.

Within this scope, we combine a wall-to-wall dataset on forest deg-
radation, deforestation and regrowth dynamics derived from Landsat 
imagery at 30 m spatial resolution4 with spatially discontinuous esti-
mates of forest canopy structure from GEDI. We jointly analyse the 
canopy height (RH98), that is, the top of the canopy or the nearest 
tallest vegetation in the footprint; the height of median energy (RH50), 
which describes the vertical distribution of canopy elements and gaps24; 
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and the aboveground biomass density (AGBD), which represents the 
aboveground woody biomass per unit area25.

Spatial patterns of forest canopy heights
The analysis of more than 23 million sample footprints of GEDI data 
over intact TMF—that is, areas with no signs of human activity detected 
during the past three decades and located at least 3 km from forest/
non-forest edge (see Methods)—reveals regional and continental vari-
ability in forest structure, with the tallest canopies found in Insular Asia, 
western Africa and western and eastern Amazonia (Fig. 1a and Extended 
Data Table 1). Overall, canopy heights are higher in Asia (34.4 ± 10.7 m) 
than in Africa (29.3 ± 8.6 m) and in Americas (28.6± 7.4 m) (mean ± s.d.). 

Similar results are found for AGBD (370.8 ± 205.2 Mg ha−1 in Asia, 
225.5 ± 110.9 Mg ha−1 in Africa and 239.5 ± 129.9 Mg ha−1 in Americas; 
Extended Data Fig. 1). These results support previous observations26 
showing that intact tropical forests in Asia, which are typically domi-
nated by hardwood wind-dispersed species, show a higher frequency 
of large and tall trees (those with RH98 greater than 30 m) compared 
with Africa and South America (Supplementary Fig. 1).

We found lower RH98 and AGBD values for the three types of dis-
turbed forests considered in our study compared with intact forests. We 
find that the minimum difference between intact and degraded forests 
is 10 m for mean RH98 and 122 Mg ha−1 for mean AGBD (Fig. 1b). Forests 
within 120 m to forest/non-forest edge show, on average, a 11 m lower 
RH98 and 150 Mg ha−1 lower AGBD compared to intact forests with an 
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Fig. 1 | Canopy heights of intact, degraded edge forests and regrowths.  
a–d, Canopy height (RH98) of intact forests (a), degraded forests from logging, 
fire or natural disturbances (b), forest/non-forest edges (120 m width) (c) and 
forest regrowths (d) in 1.5° (each side is approximately 167 km) hexagon grid 
cells between 30° N and 30° S. Canopy heights are mean values calculated over 
the period 2019–2022. Note that all the forest regrowth areas in c, regardless  
of their age, are shown here (an in-depth analysis by age class is shown in Fig. 3). 

Grid cells with fewer than 600 GEDI samples or with no statistically significant 
differences in canopy height between intact and non-intact forests were 
masked (Welch two-sided t-test. P < 0.05). 100%, 99% and 99% of the hexagons 
for degraded, edge and regrowth forests, respectively, were statistically 
significant. n represents the total number of GEDI sample plots for each forest 
cover type (Supplementary Fig. 2). Summary statistics of RH98 and AGBD are 
shown in Extended Data Table 1.
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absence of emergent trees and a canopy height distribution dominated 
by smaller trees (Fig. 1c and Supplementary Fig. 1). Regrowing forests 
on deforested land have, on average, a 16 m lower RH98 than intact 
forests, and an average AGBD of 80.4 ± 87.3 Mg ha−1 (Fig. 1d).

Magnitude and scale of edge effects
Potapov et al.27 showed that fragmentation of intact forest landscapes 
by agricultural or road expansion initiates an edge effect (here referred 
to as forest/non-forest edge effect) and a cascade of changes that lead 
to landscape transformation and loss of conservation values. To a lesser 
extent, smaller canopy openings following selective logging and fire 
could also be a source of important and yet unaccounted edge effects28 
(here referred to as forest/degraded forest edge effect). Here we show 
the impacts of these two anthropogenic edge effects on the vertical 
structure of the forest, which is caused by microclimatic alterations22 
and leads to large-tree mortality29.

We first assessed the scale and magnitude of forest/non-forest edge 
effect on forest structure metrics in the vicinity of deforested lands 
at varying distances to the forest edge (Extended Data Fig. 2). We 
used two indicators: the first and more conservative is the distance at 
which the RH98 of the edge forest reaches 95% of the RH98 of the intact  
forest; and the second is the distance at which the differences in RH98 
between edge and intact forest are not any more significant based on 
an ANOVA test (Methods).

Forests, classified as undisturbed in the Tropical Moist Forest dataset 
from the Joint Research Centre ( JRC-TMF), showed a decrease in RH98 
from the edge up to 350, 400 and 1,500 m into the forest interiors 
in America, Africa and Asia, respectively (red dotted lines in Fig. 2a 
corresponding to first criteria). Edges have a significant effect on 
canopy height for each continent, with maximum distance of effect 
being largest in the Americas (second criteria). In fact we found sig-
nificant differences in the RH98 until 7 km distance to the forest edge 
in the Americas (Tukey’s honest significant difference test, F = 2,141, 
P < 0.0001) and 1.7 km in Africa (F = 544, P < 0.0001) and Asia (F = 582, 
P < 0.0001). On average, we estimated a 20% reduction in RH98 within 
the first approximately 200 m of the forest edge relative to the intact 
forest interior, associated with a change in structure and loss of tallest 
trees (Fig. 2b). The largest extent of edge effects were detectable along 
active and consolidated deforestation fronts of the Amazon (Brazil-
ian arc of deforestation, Peru and Colombia active fronts), in Borneo 
and Sumatra coasts marked by high fragmentation levels, and on the 
borders of the Congo basin (Fig. 2c). The variability in the magnitude 
of change and extent of the edge effect within each continent is likely 
to be linked to forest structure composition and environmental condi-
tions18,22,30 and to different landscape configurations29 (for example, 
forest patch size and connectivity) and composition (for example, 
proportion and type of agricultural land) that can increase forest sen-
sitivity to edge effects31.

We detected larger scales of edge effects on AGBD in the Americas 
(1,000 m) and Africa (750 m) and lower scales in Asia (1,020 m) com-
pared with RH98 (Extended Data Fig. 3). These results show that the 
edge effect on biomass is far exceeding the previously measured17,18,32,33 
120 m. In total, the area with edge effects represented 18% (approxi-
mately 206 Mha) of the total forest area in 2022. This represents an 
increase in area of 221% compared with the total area of forest edge 
zones defined using the 120 m distance to the edge identified in previ-
ous studies.

We detect the cumulative impacts of selective logging and forest fire 
up to around 1.5 km into forest interiors and we quantify an additional 
10% decrease in RH98 on average compared with the distribution of 
forest affected by edge-desiccation effects only (grey distribution of 
all forests in Fig. 2a). The increased tree mortality due to edge effects 
triggers positive feedback loops with fires, which can penetrate up 
to 1 km into forest interiors (red curve in Fig. 2a, inset). At the same 

time, fragmentation makes the interior of the forest more accessible, 
which leads to increased hunting and resource extraction33. As a result, 
we found evidence of selective logging within 500 m from the forest 
edge, except in Asia, where logging operations often occurred deeper 
within the forest interior (purple curve in Fig. 2a, inset). In addition, the 
increased frequency of extreme droughts may directly increase tree 
mortality and fire incidence at the edges34,35, making the first kilometre 
of the forest edge highly vulnerable to land use and climate change 
impacts.

We also assessed the change in forest height in the vicinity of 
degraded forests (forest-degraded forest edge effects). We observed 
that canopy heights in undisturbed forests near logged or burned for-
ests (that is, within a 120 m radius) were on average significantly lower 
than in intact forests by 15% and 22% for RH98, respectively (Extended 
Data Fig. 4, 22% and 32% lower on average for RH50). These results 
are due not only to localized edge effects from degradation, but also 
to the omission in the Landsat-based forest cover change datasets of 
small-scale (<0.09 ha) and low-intensity disturbances at the interface 
between undisturbed and degraded forests36, highlighting the added 
value of LiDAR-based assessment to compensate for the intrinsic limita-
tions of optical sensors in detecting these phenomena.

Our findings on the spatial extent of the two edge effects (from 
both deforested land and degraded forests) were used to map the 
remaining intact TMF landscapes in 2020 (Methods). This resulted in 
smaller extents (−14%) compared with the 2020 assessment by Potapov 
et al.27 (502 Mha versus 426 Mha with our approach). Around 48% of 
our assessment of intact forest landscape falls within the World Data-
base on Protected Areas (versus 53% estimated by Potapov et al.27). 
Conversely, 57% (approximately 60% in Americas and Africa, and 28% 
in Asia) of protected TMFs are mapped as intact forest, reinforcing their 
importance for maintaining forest structure and functioning37. The 
main differences between the two maps (Extended Data Fig. 5) concern 
mosaics of disturbed forest and deforested land in the JRC-TMF dataset 
(excluded from our approach but present in Potapov et al.27). In Gabon, 
we have larger estimates of forest cover compared with Potapov et al27, 
mainly because undisturbed forest blocks are excluded in their analysis. 
This discrepancy is attributed to limited Landsat imagery before 2005 
in the western part of central Africa, resulting in an underestimation 
of historical disturbances such as selective logging, particularly in 
the 2000s4.

These results demonstrate the relevance of the effects of forest edge 
creation following tree cover loss at pantropical scale. These effects are 
especially important in forests with high conservation value and will 
contribute significantly to carbon emissions from tropical deforesta-
tion and degradation through induced edge effects38.

Persistence of forest degradation effects
Assessing the persistence of forest/non-forest edge effects over time is 
critical to understanding the long-term consequences of deforestation 
and fragmentation on the structure of forest remnants. Here we show 
that there is no significant recovery in RH98 (Fig. 3a), RH50 and AGBD 
(Extended Data Fig. 6) during the 30 years following the creation of the 
forest edge. Undisturbed forests within the first 120 m of the forest edge 
exhibit on average a 15% lower RH98 compared with intact forests from 
the first year after edge creation. Even larger decreases of 25% and 30% 
on average for RH50 and AGBD, respectively, show that the sensitivity 
of RH50 and AGBD to edge-related desiccation is higher than that of 
RH98. Degradation of forest edges from logging or fire triggered an 
additional 30% decrease in RH98 on average (50% and 40% decrease 
in RH50 and AGBD, respectively), with no evidence of recovery over 
time, which is corroborated by airborne laser scanning studies at local 
scales17,18,31. This pattern is likely to be due to the long-term persistence 
of the edge effects driven by changes in the growing conditions and the 
exposure to additional anthropogenic disturbances17,39.
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Beyond 120 m from the forest edge, where effects of edge prox-
imity are reduced (see Fig. 2), we observed immediate effects and 
post-disturbance recovery dynamics that differ considerably between 
continents, disturbance types and forest structure metrics (Fig. 3b 
and Extended Data Fig. 6). Selective logging effects on RH98 and 
AGBD are higher in Asia (decreases of 20% and 50%, respectively) 
compared with Americas and Africa (combined decreases of 10% and 

30%, respectively), which can be explained by higher selective logging 
intensity in Asia (30–40 m3 ha−1 for the Amazon, 50 m3 ha−1 for Africa 
and 270 m3 ha−1 in Asia40,41). Within 20 years since the last disturbance, 
we found that logged forests recovered on average 25%, 15% and 27% 
of RH50 in America, Africa and Asia, respectively, with slower recov-
ery for AGBD (average of 11% recovery across the three continents). 
The absence of recovery trends in RH98 can be explained by the slow 
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Fig. 2 | Spatial scale and magnitude of edge effects caused by deforestation. 
a, Canopy height (RH98) of undisturbed forests (located at more than 120 m 
from degraded forests) and all forests shown in grey (including undisturbed 
and degraded forests) at various distances to the forest edge that separates 
forest cover from agricultural land and other land covers. Inset, degradation 
area due to fire and selective logging calculated at various distances to the 
edge. The red dotted vertical line corresponds to the distance between the 
forest edge and the point at which 95% of intact forest RH98 is reached (red 
horizontal dotted line): to 350, 400 and 1,500 m for America, Africa and Asia, 
respectively. Vertical bars indicate the spatial s.d. The number of GEDI sample 

footprints for each distance to the forest edge is reported in Supplementary 
Fig. 3. F value from one-sided ANOVA; ****P ≤ 0.0001; NS, not significant. Tukey 
post hoc tests are presented in Supplementary Data. b, Average distribution  
of canopy heights of undisturbed forest (located at more than 120 m from 
degraded forests) at various distances to the forest edge. c, Scale of the edge 
effect, represented as the distance from forest edge at which RH98 reaches 95% 
of the value of RH98 for intact forest. Colours for the undisturbed forest at 
indicated distances from the forest edge in a correspond to those in b,c. Grey 
cells in c represent areas where the accumulated deforestation (from 1991 to 
2022) is less than 2% of the forest area in 1990.
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regrowth of late successional, large and emergent trees19, whereas for-
est understory dynamics, including tree removals, collateral damages 
from selective logging (such as dead fallen trees) and the fast regrowth 
of pioneer and understory species, affect the average vertical distribu-
tion of plant material, captured by RH50, making this metric a robust 
indicator of the long-term effects from degradation and subsequent 
recovery42 (Extended Data Fig. 7). Recovery rates for AGBD are lower 
compared with those reported by Rappaport et al.21 and Philipson et al.43 
showing an average of 25–32% recovery of AGBD 20 years after logging. 
The difference in the average annual rates of recovery across continents 
is likely to be influenced by logging intensity40, forest composition and 
climate conditions44.

The immediate impacts from forest fires are much higher than those 
from selective logging, with decreases of 35%, 40% and 60% in RH98 
for the Americas, Africa and Asia, respectively, and decreases of 60% 
in AGBD for the Americas and Africa and 80% for Asia. These results 
are consistent with short-term changes in AGBD from logging and 
fire reported in the literature21,45. No recovery trend in RH98 or AGBD 
was detected even ten years after the last disturbance, confirming the 
long-lasting effects of fire on tree mortality and losses of AGBD46,47. 
Manipulative studies of post-fire degradation in the Amazon showed 

strong understory vegetation regrowth under the remaining dominant 
and taller trees within 5 years after the disturbance, resulting in partial 
canopy closure48 (70–80%). This vegetation dynamic is better captured 
by changes in RH50 than by changes in RH98. The high variability in 
recovery rates is probably due to different fire frequencies, intensity, 
climate and forest-type-specific responses49.

In comparison with forest degradation, trends of forest regrowing 
on deforested land could be observed and quantified across continents 
and forest structure metrics (Fig. 3c and Extended Data Fig. 6). After 
10–15 years, the regrowth plateaued at 60% of intact forest RH98 with 
low growth rates (0.5% yr−1, 0.7% yr−1, and 0.9% yr−1 for the Americas, 
Africa and Asia, respectively). The regrowth for AGBD was on average 
half that of RH50, reaching 43% (40%, 33% and 57% Americas, Africa and 
Asia, respectively) of intact forest AGBD after 20 years of regrowing 
rates, which are similar to those reported by Poorter et al.50 (33%) using 
field inventories, or by Heinrich et al.15 (36–49%) using remote sensing 
data. However, the slowdown in regrowth rates of AGBD after ten years 
of regeneration may indicate that several drivers are affecting forest 
growth and are not captured by Poorter et al.50 (Supplementary Data). 
We found that land use intensity through repeated deforestation events 
and fire occurrences before forest regrowth may have negative effects 
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on regrowth after 5–10 years (Supplementary Fig. 4; and corroborated 
by previous studies51), whereby fire legacies could decrease regrowth 
rates by 20 to 75%, particularly in drier and water-deficient regions.

The fate of degraded forests
The stage of forest degradation is linked to the type, intensity and recur-
rence of past disturbances, as well as to the time since the previous 
disturbance. Here we show that degradation also has a crucial role in 
predicting future deforestation, whereby the likelihood of total defor-
estation and land use change increases with the degree of forest degra-
dation. Our results indicate that degraded forests followed by recent 
deforestation (2020–2022) had significantly lower canopy heights and 
AGBD compared to those not subjected to deforestation (Extended 
Data Fig. 8 and Supplementary Fig. 6). On average, degraded forests 
followed by deforestation experienced severe impacts, with average 
reductions in RH50, RH98 and AGBD of 60%, 45% and 65%, respectively. 
These impacts are probably due to unsustainable logging and/or fire, 
as shown in Fig. 3. Moreover, these structural parameters have a large 
spatial variability (±12.8%, ±13.3% and ±14.6% for RH50, RH98 and AGBD, 
respectively), reflecting the complexity of the degradation processes 
and underlying factors driving deforestation in the tropics52.

We found that forest relative heights (RH50 and RH98) and distance 
to the edge were strong predictors of the probability of deforestation 
(Extended Data Fig. 9 and Supplementary Fig. 7). Degraded forests in 
America showed, on average, a higher deforestation risk than in Africa 
or Asia, as 50% of deforestation probability was reached when forests 
lost 50% of their initial heights (60% in Africa and Asia). Furthermore, 
proximity to the forest edge, recognized in previous research as a key 
factor in assessing deforestation risk53, showed complex interactions 
with canopy height in degraded forests. This observation highlights 
the interplay between different factors such as degradation, exposure 
to human activities and edge-desiccation effects within the first kilo-
metre from the forest edge, contributing to an increased likelihood of 
subsequent deforestation. However, within 120 m of the forest edge, 
degradation had a role in enhancing subsequent deforestation only 
in the Americas, and no statistical differences in RH50, RH98 or AGBD 
were found for the other continents (Extended Data Fig. 8 and Sup-
plementary Fig. 6).

Conclusions
Our study demonstrates that the integration of recent and spatially 
sparse spaceborne LiDAR observations (GEDI), with long-term and 
spatially continuous spaceborne optical datasets ( JRC-TMF) provides 
a novel approach to assess forest degradation and recovery at the pan-
tropical scale. We show that the magnitude of degradation effects on 
canopy structure are greater than previously reported, with a 20–80% 
decrease in canopy height and AGBD. The effects of edges on forest 
vertical structure were previously assumed7 to extend no more than 
about 100 m. Our results show that this is a significant underestimate, 
and we measure edge effects up to around 1.5 km into the forest inte-
rior, implying that the overall spatial impact of fragmentation across 
the pantropical belt is severely overlooked by at least 200%. We show 
that the cumulative impacts of selective logging, fires and edge effects 
have significant long-term effects on the structure of global TMFs, but 
as the 30-year period of our study is too short to observe a full recov-
ery of the forest structure for most types of forest disturbances and 
regions, future studies should further address this question. Although 
the current areas of fast-regrowing forests allow offsetting of around 
25% of carbon loss from deforestation15, we found here that the full 
recovery of forest structure after deforestation or degradation would 
take a centennial timescale and may be slowed down by anthropogenic 
factors. Finally, this study provides new insights for identifying the for-
ests that are most vulnerable to agricultural expansion. Forest canopy 

structure, combined with disturbance history, is a significant indicator 
of deforestation risk and should be used to target forest monitoring 
and prioritize conservation in highly degraded areas. This type of spa-
tially explicit information on tropical forest degradation is crucial for 
implementing more effective forest-based mitigation policies54 and 
conservation activities agreed under the UNFCCC and the UN Conven-
tion on Biological Diversity55 (https://www.cbd.int/meetings/COP-15).
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Article
Methods

In this study, we use the spaceborne GEDI6 from the National Aeronaut-
ics and Space Administration (NASA) to analyse the extent of forest deg-
radation on canopy structure at pantropical scale, but its short lifetime 
limits long-term monitoring. To overcome this limitation, we combine 
GEDI data with long-term information on forest dynamics from Landsat 
using a space-time substitution strategy. While this approach has been 
used in previous studies15, it assumes that differences in neighbouring 
land characteristics can be used as a proxy for changes over time and 
that climate and vegetation remain relatively constant over the 20- to 
30-year analysis period. For example, when studying forest recovery, 
we assume that different height metrics from GEDI represent different 
ages since the last disturbance.

Preparation of input datasets
TMF datasets. We use JRC-TMF, which provides information on changes 
in humid forest cover from 1990 to 2022 derived from the Landsat 
archive collection (more details on the methodology and accuracy  
assessment in Vancutsem et al.4). Mangrove forests were excluded 
from the analysis as periodical tidal floods affect the consistent estima-
tion of canopy height over time. Bamboo-dominated forests were also  
excluded, as the dynamics of forest structure are related to seasonal 
or occasional defoliation rather than anthropogenic disturbances. We 
used the JRC Transition Map and the Annual Change Collection that 
capture the TMF extent and the related disturbances on an annual basis 
to derive the following classes.
Intact forests. Undisturbed forest (forest without any disturbance 
observed over the Landsat time series) located at more than 120 m 
from degraded forests and more than 3,000 m from the forest/non- 
forest edge.
Degraded forests. Closed evergreen or semi-evergreen forests that 
have been temporarily disturbed for a period of a maximum of 2.5 years 
by selective logging, fire, or unusual weather events. We derived the 
year since the last degradation from the JRC-TMF dataset used as a proxy 
for forest recovery. To attribute forest degradation to its direct driver, 
we first used the global forest cover loss due to fire dataset (GFC-Fire) 
from 2001 to 2021 from The Global Land Analysis and Discovery (GLAD) 
laboratory56. All certainties of forest fires were considered. Regarding 
degradation due to selective logging, we performed an extensive visual 
interpretation and delineation of selective logging operations based 
on their specific spatial features visible on the JRC-TMF Transition Map. 
The selected degraded forest pixels correspond to temporary logging 
roads, logging felling gaps, decks, and skid trails. This dataset covers 
Brazil, French Guiana, Guyana, Cameroon, Central African Republic, 
Gabon, Congo, the Democratic Republic of Congo, Indonesia, Malay-
sia and Papua New Guinea. The managed forest concessions dataset 
from the World Resource Institute was used to guide the collection of 
polygons in central Africa and southeast Asia while the delineation in 
the Amazon was generated from previous scientific experience57,58. An 
independent visual interpretation of selective logging was performed 
in order to analyse how the delineation influenced our results. This 
sensitivity analysis showed small differences in the magnitude and 
trends of logging impacts on forest structure without altering the sub-
sequent analysis and conclusions (Supplementary Fig. 8). It also proved 
to be unbiased and robust when comparing changes in forest height 
in the vicinity of forest degraded by selective logging (Supplementary 
Fig. 9). We created a buffer of 300 m radius (10 Landsat pixels) around 
fire pixels to avoid an overlap between the two causes when analysing 
impacts from selective logging alone. When looking at forest degra-
dation alone, we excluded pixels within the edge forest defined with a 
conservative value of 120 m from the edge.
Forest edge. To compute forest edges, we considered undisturbed or 
degraded forest pixels from the JRC-TMF Annual Change Collection 
dataset for years spanning from 1989 to 2022. We applied a 5 × 5 pixel 

moving window for all annual forest maps to remove isolated pixels 
for both forest and non-forest classes using the sieve algorithm and 
replace them with the value of the most frequent class within the mov-
ing window. For the analysis of forest edge effect penetration, we used 
the extent of forest cover in 2022 to derive undisturbed forest edges 
using edge widths varying from 60 m to 10,200 m at different intervals 
(0–60 m, 60–120 m, 120–240 m, 240–420 m, 420–720 m, 720–1,020 m, 
1,020–1,500 m, 1,500–2,040 m, 2,040–2,580 m, 2,580–3,120 m, 
3,120–4,020 m, 4,020–5,100 m, 5,100–6,000 m, 6,000–7,200 m, 
7,200–8,100 m, 8,100–9,000 m, 9,000–10,200 m) using the Euclidean 
distance calculated from the non-forest class. These distances were 
selected based on previous studies reporting on the scale at which 
edge effects operate and affect microclimate59 (up to 400 m), canopy 
moisture levels29 (up to 2.7 km), phenology60 (up to 5–10km) and forest 
biomass22 (up to 1.5 km). The first 6 intervals of distances are centred 
on the most recent and accurate evaluation of the extent of the edge 
effect17,18,32,61 (~100–200 m). To focus on the scale of edge effects due to 
deforestation, we discarded grid cells of 1.5° showing a value of accu-
mulated deforestation (1991–2022) compared to forest area in 1990 
of less or equal than 2% (estimates derived from JRC-TMF). To mitigate 
the effects of canopy disturbance interactions between degraded and 
undisturbed forests, we eliminated areas of transition using a buffer of 
120 m around degraded forests. This distance corresponds to the area 
initially affected by the felling of individual trees in selective logging 
operations62 where localized edge effects are the highest28. To calculate 
the age of forest edges, we adopted a 120 m edge width, which consti-
tutes the threshold of significant AGBD changes observed in the trop-
ics7,17,18. We produced forest edges from 1989 to 2022, masked natural 
edges (transitions forest/water and forest/savannah), derived the year 
of forest edge creation and computed the age of all edges classified as 
forest in 2022. We separated forest edges into undisturbed forest edges, 
burned forest edges (where a fire from the GLAD dataset occurred after 
the year of forest edge creation) and logged forest edges (all other 
types of degradation occurring after the year of forest edge creation).
Forest regrowth or secondary forest. Forest regrowth or secondary 
forest refers to a two-phase transition from moist forests to defor-
ested land to vegetative regrowth. A minimum duration of 3 years 
(2020–2022) of permanent presence of moist forest cover is needed 
to classify a pixel as forest regrowth to avoid confusion with other land 
uses. Using the JRC-TMF Annual Change Collection, we calculated the 
age of secondary forests (from 1 to 32 years old), which may have an 
uncertainty of 1 year, depending on whether a deforestation event was 
detected at the end of a year or at the beginning of the next year. In case 
of late detection, the area will be classified as regrowing one year later 
(if it does not show signs of permanent deforestation).

GEDI dataset. The GEDI mission uses a LiDAR deployed on the Inter-
national Space Station from April 2019 until March 2023. One of its 
primary scientific objectives is to map forest structural properties 
and understand the effects of vegetation structure on biodiversity. It 
provides sparse measurements (hereafter sample plots or shots) of 
vegetation structure, including forest canopy height6 with a vertical 
accuracy of about 50 cm, over an area defined by a sampling footprint of 
~25 m width. For our analysis, we used GEDI L2A63 Elevation and Height 
Metrics (version 2) and GEDI L4A64 Above Ground Biomass (version 2.1) 
which represent returned laser energy metrics on canopy height and 
estimated AGBD for each 25 m diameter GEDI footprint. The footprint 
data are geolocated and have an expected positional error6 (that is, hori-
zontal geolocation accuracy) of 11 m. For each footprint, we extracted a 
set of relative height (RH) metrics, the AGBD and the associated predic-
tion standard error (AGBD_SE). AGBD are reported as weighted aver-
ages, using the AGBD_SE as weight. Note that the estimation of AGBD 
based on RH metrics from GEDI L2A varied considerably in performance 
across the TMF domain, having a determination coefficient (R2) of 0.66 
(mean residual error (MRE) of 10.4 Mg ha−1), 0.64 (MRE of 15.32 Mg ha−1), 



0.36 (MRE of 121.15 Mg ha−1) and 0.61 (MRE of 8.17 Mg ha−1) for South 
America, Africa, Asia and Oceania, respectively (further details on the 
validation of the GEDI L4A are in ref. 25).

RH metrics represent the height (in metres) at which a percentile of 
the laser energy is returned relative to the ground. RH98 corresponds 
to the maximum canopy height (hereafter ‘canopy height’), which is 
a more stable height metric than RH100. RH50 (also known as ‘height 
of median energy’ (HOME)24) is the median height at which the 50th 
percentile of the cumulative waveform energy returned relative to the 
ground and has been identified as one of the LiDAR metrics with the 
greatest potential for estimating structural characteristics in tropical 
forests24. When validated against ground-based data, RH50 generally 
exhibits a strong correlation with key structural variables, including 
AGBD, stem diameter, and basal area65. Due to its strong dependence 
on the vertical distribution of canopy elements and gaps within the 
canopies and canopy cover, RH50 serves as a highly complementary 
metric to RH98 for characterizing changes in canopy structure from 
degradation66 (see also Extended Data Fig. 7).

We selected GEDI data acquired from 1 January 2019 to 31 December 
2022. To select the highest quality data, we filtered the GEDI data (both 
GEDI L2A and L4A) by selecting only the observations collected in power 
beam mode and labelled them as good quality (quality flag equals 1), 
thus avoiding risks of having degraded geolocation under suboptimal 
operating conditions (degrade flag equals 0). Additionally, we filtered 
GEDI 2A data using only night acquisitions to limit the background noise 
effects of reflected solar radiation. We used the Shuttle Radar Topogra-
phy Mission (SRTM) information to exclude GEDI footprints above 20° 
slopes to avoid errors in vegetation height. Steep slopes might lead to 
erroneous relative height metrics (especially over sparsely vegetated 
areas), so applying our threshold of 20° is a conservative approach67. 
Additionally, we filtered out GEDI footprints classified as water in the 
Global Land Analysis and Discovery Landsat Analysis Ready Data quality 
layer (ARD; https://glad.umd.edu/ard/home) or when a GEDI footprint 
was located within an urban area defined by the Global Urban Dataset of 
Florczyk et al.68. Finally, we excluded GEDI footprints with RH98 values 
below 5 m to be compliant with the Food and Agriculture Organization 
(FAO) definition of forest.

Further, we used the beam sensitivity information from GEDI L2A as 
a proxy for signal-to-noise ratio and the ability of GEDI to penetrate the 
highest canopy cover. For the intact and undisturbed forest classes, 
we considered only shots with a beam sensitivity greater than 0.98, 
while for the other classes (for example, degraded, edge and regrowth 
forests), we used a beam sensitivity greater than 0.95, as previously 
recommended67,69.

Combining datasets
On the temporal scale, we used separately yearly GEDI data to estimate 
as accurately as possible the year since the last disturbance (that is, 
degradation, forest edge creation or deforestation). All degraded and 
edge forests were masked out if the date of disturbance or the year of 
edge creation occurred during the GEDI acquisition period. A similar 
step was performed for secondary forests when the year of regrowth 
overlapped with the GEDI acquisition period. On the spatial scale, to 
reduce the noise caused by GEDI geolocation errors, we applied a mor-
phological (circular shape) filter of 35 m to the forest cover change 
class of interest (intact, degraded, edge or regrowth), which resulted 
in the removal of single- small-patches of pixels. We thus ensured that 
GEDI samples fell within the class of interest and avoided any partial 
overlap. The extent of mapped forest change areas in the JRC-TMF 
dataset was used to target the sampling of GEDI footprints and quantify 
forest edge effects or canopy disturbance contagiousness between 
degraded and undisturbed forests on forest structure still classified 
as ‘undisturbed forest’.

To ensure robust and comparable observations of forest struc-
ture metrics across the multiple classes of forest cover change, we 

considered a minimum of 600 GEDI samples for each 1.5° grid cell 
(~167 km at the Equator; around a given point) and a minimum of 7 grid 
cells per continent to derive continent-level statistics of forest RHs 
and AGBD. When analysing the time series (Fig. 3 and Supplementary 
Fig. 5), a minimum threshold of 30 GEDI samples for each time step of 
the trajectory—and a minimum of 600 GEDI samples for the sum of all 
the time steps—within each grid cell was required. Note that the time 
step does not refer to the GEDI date but to the JRC-TMF dataset where 
the timing of degradation, regrowth etc. is assessed. Similarly, for edge 
effect penetration, a minimum of 30 GEDI samples for each distance to 
the edge within each grid cell—and a minimum of 600 GEDI samples for 
the sum of all the distances—was required (see Fig. 2 and Supplementary 
Fig. 3). Metadata on the number of GEDI samples for aggregated classes 
of forest cover change is provided in Supplementary Fig. 2. Wall-to-wall 
information of relative heights with high spatial resolution on large 
scales, such as those produced by Lang70 for canopy height only, will 
increase in the future the quantity of data, thus improving the quality 
and the robustness of the analysis.

The computation of canopy heights for intact, degraded, edge, and 
regrowing TMFs at the 1.5° grid cell level may vary due to local environ-
mental and anthropogenic factors (for example, soil and forest types), 
leading to potential high variability in the reported canopy height 
statistics. In order to reduce sampling bias in the structural variable 
dataset, we randomly resampled GEDI observations 500 times within 
each 1.5° × 1.5° grid cell. We then summarized the random samples by 
calculating the mean and standard deviation of each structural vari-
able, for each grid cell. Using this random sampling procedure based 
on the iteration (500 times) of sampling 300 GEDI observations for 
each grid cell, we found that the intra-grid variability of canopy heights 
was not significant. The results of the random sampling procedure 
show the low standard deviation for each class of RH98 distribution 
and forest considered (that is, intact, degraded, edge and regrowth) 
(Supplementary Fig. 10).

Intact forest landscape assessment and comparison with 
Potapov’s data product
We selected undisturbed forests in 2020 free from any disturbances 
located at: (1) a distance higher than the scale of the forest/non-forest 
edge effect identified at the grid cell level; and (2) more than 120 m 
distance from degraded forests from the JRC-TMF dataset (identified 
scale of the forest/degraded forest edge effect). Potapov’s map of 
202027 was constrained to the extent of TMFs (excluding mangroves 
and bamboo-dominated forests). We resampled our JRC-TMF-derived 
intact forest landscape (IFL) map from 30 m to 1 km. We computed the 
number of connected pixels (where each pixel contains the number of 
4-connected neighbours) and then restricted them to values greater or 
equal to 500 to obtain an approximation of forest patch area greater 
than 500 km2 (to match the definition of IFL of Potapov, with a minimum 
area of 500 km2). Other criteria in Potapov on minimum IFL patch width 
(10 km) or minimum corridor width (2 km) were not implemented in 
our approach.

Statistical tests
We performed a series of one-way ANOVAs to test for differences in the 
impacts of edge effects at different distances and times on the long-term 
recovery of the relative heights and biomass variables. ANOVAs were 
performed separately for each continent. For the height variables 
(RH50 and RH98), a series of standard one-way ANOVAs were used. In 
the analyses involving AGBD, we used a modified approach to propagate 
the prediction standard error associated with the AGBD dataset values 
which involved using a Monte Carlo approach (n = 500). In brief, we 
generated random noise that was added to the AGBD data. For each 
iteration i we generated a noise term, noiseij, by drawing a random value 
from a normal distribution with mean μ of 0 and s.d. equal to the pre-
diction standard error of the AGBD (σj) for each GEDI footprint. The 

https://glad.umd.edu/ard/home
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noise can be represented as: 

N μ σnoise ( , )ij j
2 . We then perturbed the 

AGBD values by adding the generated noise to the original dataset 
(biomassoriginal,j) for the ith iteration (biomassperturbed,i,j). We then per-
formed an ANOVA for each iteration using the perturbed dataset and 
recorded the results. We subsequently examined the distribution den-
sity of the F values. The results showed minimal variability suggesting 
that observed differences are robust to uncertainty associated with 
the AGBD values (Supplementary Fig. 11). For each ANOVA, we con-
ducted a series of Tukey honest significant difference post hoc tests 
to assess significant differences between distance classes or time steps. 
The significance level was set to P < 0.05.

Modelling deforestation risk
We assessed whether changes in RH50, RH98 and AGBD due to the 
occurrence of forest degradation and the distance to the edge represent 
an early warning signal of future deforestation. We retrieved GEDI foot-
prints of 2019 sampled in forest degraded before 2018, followed or not 
by deforestation (2020–2022), together with GEDI footprints of 2020 
sampled in forest degraded before 2019, followed or not by deforesta-
tion (2021–2022) and, footprints of 2021 sampled in forest degraded 
before 2020 followed or not by deforestation (2022). We then separated 
all samples based on their location within the first 120 m to the edge 
or beyond. The probability of deforestation in degraded forests was 
modelled using a generalized linear modelling approach. We fitted two 
models. One included only a single predictor, so that the percentage 
of intact forest height was the only predictor (Supplementary Fig. 12). 
The second model included two predictors—that is, the percentage of 
intact forest height and the distance to the edge. The error structure 
associated with the models was assumed to be binomial with a logit 
link function. A given model takes the general form:

Y B π n~ ( , ) (1)i i i

E Y n π Y n π π( ) ~ × and var( ) ~ × × (1 − ) (2)i i i i i i i

π ηlogit( ) = (3)i i

η α βX= + (4)i i

where Yi is the ith observation corresponding to the occurrence of 
a deforestation event and βXi is a matrix of regression coefficients.

Models were fitted within a Bayesian framework. We fitted the models 
using the programming language Stan via the brms package in the R 
software for statistical computing71. Models were run using 4 chains 
of 4,000 iterations each, with a warm-up of 1,000. We used the brms 
default priors for our model parameters. Convergence was visually 
assessed using trace plots (Supplementary Fig. 13) and the Rhat values 
(that is, the ratio of the effective sample size to the overall number of 
iterations, with values close to one indicating convergence). Markov 
chain Monte Carlo diagnostics showed a good convergence of the four 
chains, while the posterior distributions are centred around one peak 
value. The discriminatory ability of the models—that is, their ability 
to successfully predict a deforestation event—was assessed using the 
receiver operating characteristic (ROC) curve. We calculated the area 
under the curve (AUC) and compared the values with the guidelines 
provided by Swets72.

Cloud computing platform
All data extraction for this study was performed in Google Earth 
Engine73, which provides the ability to compute GEDI footprint sta-
tistics and analyse the entire data records with high computational 
efficiency. The GEE data catalogue contains processed L2A and L4A 
GEDI data products—that is, the rasterized versions of the original GEDI 
products, with each GEDI shot footprint represented by a 25 m pixel.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this study are from publicly available sources. GEDI 
data are archived on NASA Distributed Active Archive Centers (DAACs). 
GEDI’s footprint-level Relative Height data were taken from the 
GEDI02_A height and elevation product, available at LPDAAC: https://
doi.org/10.5067/GEDI/GEDI02_A.002. GEDI’s biomass data (AGBD) was 
taken from the GEDI04_A product also available at LPDAAC: https://doi.
org/10.3334/ORNLDAAC/2056. The JRC-TMF dataset can be accessed at 
https://forobs.jrc.ec.europa.eu/TMF/data.php#gee. The slope is pro-
cessed using SRTM data downloaded from https://developers.google.
com/earth-engine/datasets/catalog/SRTMGL1_003. The Intact Forest 
Landscape dataset for 2020 can be downloaded at https://intactforests.
org/data.ifl.html. Managed Forest Concessions dataset (accessed in Feb-
ruary 2022) can be downloaded at https://data.globalforestwatch.org/
documents/gfw::managed-forest-concessions-downloadable/about.  
The World Database on Protected Areas (accessed in October 2023) can 
be downloaded at www.protectedplanet.net. To ensure the full repro-
ducibility and transparency of our research, we provide all of the data 
analysed during the current study. Pre-processed data, post-processed 
data, drivers of forest degradation, maps, codes and final figures devel-
oped in this study are made publicly available and briefly described to 
facilitate reproducibility and applicability. These data are permanently 
and publicly available on a Zenodo repository (https://doi.org/10.5281/
zenodo.11235618)74.

Code availability
To ensure full reproducibility and transparency of our research, we 
provide all of the scripts used in our analysis. Codes used for this study 
(GEE and R scripts) are permanently and publicly available in a Zenodo 
repository: https://doi.org/10.5281/zenodo.1123561874.
 
56.	 Tyukavina, A. et al. Global trends of forest loss due to fire from 2001 to 2019. Front. Remote 

Sens. 3, 825190 (2022).
57.	 Lima, T. A. et al. Comparing Sentinel-2 MSI and Landsat 8 OLI imagery for monitoring 

selective logging in the Brazilian Amazon. Remote Sens. 11, 961 (2019).
58.	 Shimabukuro, Y. E., Beuchle, R., Grecchi, R. C. & Achard, F. Assessment of forest degradation 

in Brazilian Amazon due to selective logging and fires using time series of fraction images 
derived from Landsat ETM+ images. Remote Sens. Lett. 5, 773–782 (2014).

59.	 Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year 
investigation. Conserv. Biol. 16, 605–618 (2002).

60.	 Curran, L. M. et al. Impact of El Niño and logging on canopy tree recruitment in Borneo. 
Science 286, 2184–2188 (1999).

61.	 Almeida, D. R. A. et al. https://doi.org/10.1002/eap.1952. Ecol. Appl. 29, e01952 (2019).
62.	 Asner, G. P., Keller, M. & Silva, J. N. M. Spatial and temporal dynamics of forest canopy 

gaps following selective logging in the eastern Amazon. Glob. Change Biol. 10, 765–783 
(2004).

63.	 Dubayah, R. et al. GEDI L2A elevation and height metrics data global footprint level V002. 
NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/GEDI/GEDI02_A.002 (2021).

64.	 Dubayah, R. O. et al. GEDI L4A footprint level aboveground biomass density, version 1. 
ORNL DAAC https://doi.org/10.3334/ORNLDAAC/1907 (2021).

65.	 Dubayah, R. O. et al. Estimation of tropical forest height and biomass dynamics using lidar 
remote sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosci. 115, https://doi.org/ 
10.1029/2009JG000933 (2010).

66.	 Bourgoin, C. et al. UAV-based canopy textures assess changes in forest structure from 
long-term degradation. Ecol. Indic. 115, 106386 (2020).

67.	 Dubayah, R. et al. GEDI launches a new era of biomass inference from space. Environ. Res. 
Lett. 17, 095001 (2022).

68.	 Florczyk, A. et al. GHS-UCDB R2019A—GHS Urban Centre Database 2015, multitemporal 
and multidimensional attributes. European Commission Joint Research Centre. http://
data.europa.eu/89h/53473144-b88c-44bc-b4a3-4583ed1f547e (2019).

69.	 Oliveira, P. V. C., Zhang, X., Peterson, B. & Ometto, J. P. Using simulated GEDI waveforms 
to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height 
metrics over the Brazilian Amazon Forest. Sci. Remote Sens. 7, 100083 (2023).

70.	 Lang, N. et al. Global canopy height regression and uncertainty estimation from GEDI 
LIDAR waveforms with deep ensembles. Remote Sens. Environ. 268, 112760 (2022).

71.	 Bürkner, P.-C. Bayesian item response modeling in R with brms and Stan. J. Stat. Softw. 
100, 1–54 (2021).

https://doi.org/10.5067/GEDI/GEDI02_A.002
https://doi.org/10.5067/GEDI/GEDI02_A.002
https://doi.org/10.3334/ORNLDAAC/2056
https://doi.org/10.3334/ORNLDAAC/2056
https://forobs.jrc.ec.europa.eu/TMF/data.php#gee
https://developers.google.com/earth-engine/datasets/catalog/SRTMGL1_003
https://developers.google.com/earth-engine/datasets/catalog/SRTMGL1_003
https://intactforests.org/data.ifl.html
https://intactforests.org/data.ifl.html
https://data.globalforestwatch.org/documents/gfw::managed-forest-concessions-downloadable/about
https://data.globalforestwatch.org/documents/gfw::managed-forest-concessions-downloadable/about
http://www.protectedplanet.net
https://doi.org/10.5281/zenodo.11235618
https://doi.org/10.5281/zenodo.11235618
https://doi.org/10.5281/zenodo.11235618
https://doi.org/10.1002/eap.1952
https://doi.org/10.5067/GEDI/GEDI02_A.002
https://doi.org/10.3334/ORNLDAAC/1907
https://doi.org/10.1029/2009JG000933
https://doi.org/10.1029/2009JG000933
http://data.europa.eu/89h/53473144-b88c-44bc-b4a3-4583ed1f547e
http://data.europa.eu/89h/53473144-b88c-44bc-b4a3-4583ed1f547e


72.	 Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).
73.	 Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. 

Remote Sens. Environ. 202, 18–27 (2017).
74.	 Bourgoin, C., Ceccherini, G. & Girardello, M. Human degradation of tropical moist forests 

is greater than previously estimated. Zenodo https://doi.org/10.5281/zenodo.11235618 
(2024).

75.	 Patterson, P. L. et al. Statistical properties of hybrid estimators proposed for GEDI—NASA’s 
global ecosystem dynamics investigation. Environ. Res. Lett. 14, 065007 (2019).

Acknowledgements The views expressed are purely those of the writers and may not in any 
circumstances be regarded as stating an official position of the European Commission. The 
authors thank S. Carboni for her help in the visual interpretation of selective logging. This 
study has been partly financed through the European Union’s Amazonia+ programme and by 
the Directorate General for Climate Action of the European Commission (DG-CLIMA) through 
Lot 2 (TroFoMo (Tropical moist Forest Monitoring)) of the ForMonPol (Forest Monitoring for 
Policies) Administrative Arrangement.

Author contributions C.B., G.C., C.V., M.G., A.C. and F.A. conceived the idea and designed the 
methodology. C.B., G.C., A.C., M.G. and G.V. analysed the data and wrote the Google Earth 
Engine and R scripts. R.B. provided data on selective logging in Brazil. C.B. and G.C. wrote the 
manuscript with contributions from the other authors. All authors contributed critically to the 
interpretation of the results and gave final approval for publication.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07629-0.
Correspondence and requests for materials should be addressed to C. Bourgoin.
Peer review information Nature thanks Mathew Williams and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work. Peer review reports are 
available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5281/zenodo.11235618
https://doi.org/10.1038/s41586-024-07629-0
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | AGBD of intact, degraded, edge forests and regrowths. 
Above Ground Biomass Density (AGBD) of intact forests (a) degraded forests 
(b), forest edges (c) and regrowths (d) in 1.5° (~ 167 km) grid cells between 30°N 

and 30°S. Grid cells with less than 600 GEDI samples or with no statistically 
significant differences in canopy height between intact and non-intact forests 
were masked (Welch two-sided t-test p < 0.05).



Extended Data Fig. 2 | Transects of GEDI derived canopy heights. Transects 
of GEDI relative heights (RH50 and RH98 from year 2020) in the Brazilian 
Amazon, Congo basin and West Sumatra crossing deforested land, edge forest 
(edge width of 350 m, 800 m and 1000 m, respectively) and intact forest. The 

two black lines represent the height of RH98 and RH50. Background data: 
Google (08/2019, 12/2023 and 03/2022 for panels a-c, respectively), © 2024 
Maxar Technologies.
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Extended Data Fig. 3 | Spatial scale and magnitude of edge effects caused 
by deforestation on AGBD and RH50. Average distribution of RH50 (panel a) 
and AGBD (panel b) of undisturbed forests (located at more than 120 metres 
from degraded forests) and all forests (including undisturbed and degraded 
forests) at various distances to the forest edge (agricultural and other land 
covers). The inset caption represents the degradation area due to fire (red 
curve) and selective logging (purple curve) calculated at various distances to 
the edge. The red dotted vertical line is placed at a distance equal to 350, 400, 

and 1500 m for America, Africa, and Asia, respectively, and corresponds to the 
distance between the forest edge and the point at which 95% of intact forest 
RH98 is reached (red horizontal dotted line). Vertical bars indicate the spatial 
standard deviation. F represents the F-Value in one-sided ANOVA and asterisks 
indicate the level of statistical significance for ANOVA: * p ≤ 0.05, ** p ≤ 0.01,  
*** p ≤ 0.001, **** p ≤ 0.0001, ns stands for not significant. Tukey post-hoc tests 
are available in supplementary data. The number of GEDI sample footprints for 
each distance to the forest edge is reported in Supplementary Fig. 3.



Extended Data Fig. 4 | Edge effects caused by forest degradation from 
selective logging and fire. Difference in RH98 (panel a) and RH50 (panel b)  
for forest classified as undisturbed in the JRC-TMF dataset located within and 
outside a buffer area (120 m radius) around logged or burned forest. Asterisks 
indicate the level of statistical significance of these comparisons: Adjusted  

p values are determined by two-tailed unpaired T test. The number at the 
bottom of each boxplot corresponds to the number of GEDI samples. Boxplot 
shows data from the 25th–75th percentile, the median (line) and whiskers 
extending to the minimum and maximum within 1.5× interquartile range.



Article

Extended Data Fig. 5 | Intact Forest Landscape mapping. Intact forest 
landscape (IFL) mapping of the year 2020 in 1.5-degree grid cells between  
30°N and 30°S. (a) Area of TMF-based IFL (here referred to as Bourgoin - the 
main author of this study - approach). Dark grey grid cells present no IFL area. 
(b) Area of IFL derived from Potapov’s 2020. The extent was restricted to the 

tropical moist forest domain. We further excluded mangrove, forest conversion 
to water detected in the JRC-TMF dataset and bamboo-dominated forest areas 
to allow comparison with our approach. (c) Difference in area between our 
approach (i.e. JRC-derived/Bourgoin) and Potapov’s.
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Extended Data Fig. 6 | Impacts of forest degradation from selective logging, 
fire and edge effects on AGBD and RH50. Long-term impacts on RH50 and 
AGBD from edge-desiccation effect (6a, 6d), degradation (fire or logging) of 
edge forest (6a, 6d), selective logging (logged 1x corresponds to logged once 
over the last 3 decades), fire (6b, 6e) and secondary forests regrowing on 
abandoned deforested lands (6c, 6 f). Results are reported as the percentage of 
intact forest canopy height (solid line) after normalising the difference in RH50 
and AGBD within each grid cell between intact forest and each forest type 

(degraded, edge forest, regrowth) and age. Dots represent the average value  
of RH50/AGBD and vertical bars indicate the spatial standard deviation.  
F represents the F-Value in one-sided ANOVA and asterisks indicate the level  
of statistical significance for ANOVA: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001,  
**** p ≤ 0.0001, ns stands for not significant. Tukey post-hoc tests are available 
in supplementary data. GEDI samples for each disturbance type and related 
time since disturbance are reported in Supplementary Fig. 5.



Article

Extended Data Fig. 7 | Cumulative Return Energy from GEDI for different 
forest types. Cumulative Return Energy from GEDI L2A for different forest 
types (30 GEDI footprints for each forest type were sampled in a grid cell 

located in the northeast of the Brazilian Amazon). The vertical black lines refer 
to RH98 and RH50. The horizontal grey lines refer to the height of RH98 and 
RH50 for Intact Forest. The error band indicates the standard deviation.



Extended Data Fig. 8 | Canopy heights of degraded forests before being 
deforested. Differences in canopy heights of different forest types before 
deforestation, compared to canopy heights of similar and contemporary 
forests that are not deforested. The canopy heights (RH98) are all retrieved 
during the period 2019-2021, while the deforestation events occurred 1-3 years 
after GEDI measurements (2020-2022). The different forest types are degraded 
forest (located beyond the edge), degraded edge forest (width 120 m), and 

undisturbed edge forests. For degraded forests, degradation occurred before 
2019, and no disturbance was observed during the year of GEDI data acquisition. 
Big circles represent the averages, and the small dots are individual GEDI 
samples. Adjusted p values are determined by two-tailed unpaired T test. The 
number at the top of each distribution corresponds to the number of GEDI 
samples.
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Extended Data Fig. 9 | Modelling of deforestation risk based on canopy 
heights and distance to forest edge. a) Marginal model plot of the binary 
logistic regression model of RH98 predicting whether deforestation was 
reported. The plot shows the expected influence of degraded forest structure 
(canopy height, expressed as a percentage of intact forest RH98) on the 
probability of deforestation. The grey shaded areas indicate the 95% credibility 
intervals of the predicted values. OR is the odds ratio. Stacked dots represent 
the GEDI samples deforested/not deforested. The marginal effect at the mean 

(MEM) quantifies for a one-point increase in RH98 (i.e. the x-axis) the associated 
percentage point variation in the probability of deforestation. AUC is the area 
under the ROC curve101. Marginal effects are partial derivatives of the regression 
equation for each variable in the model for each unit in the data. b) Plot of the 
marginal effects showing the probability of deforestation based on degraded 
forest structure (canopy height, expressed as a percentage of intact forest 
height) and the distance to the forest edge.

https://www.zotero.org/google-docs/?r6RMk8


Extended Data Table 1 | Summary statistics of canopy heights and AGBD for intact, degraded, edge forests and regrowths

Number of GEDI shots and statistics (mean, standard deviation and precision) of grid cells by continent of RH98 and AGBD for intact forest, degraded forest, forest edge and forest regrowth. 
The precision of the RH98 was obtained by computing the standard error of the RH98 values at footprint levels for each continent. The precision of the AGBD was obtained by computing  
the standard error of the AGBD values at footprint levels for each continent. The mean, standard deviation and precision of the AGBD predictive standard error (AGBD_SE) are shown in 
Supplementary Table 1. Note that issues linked to the non-randomness and spatial autocorrelation of GEDI samples and the propagation of the regression error associated to each AGBD 
estimate are not integrated in this computation of summary statistics67,75.
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