RELIQUES project – Monday, 30th of September 2019 – Noumea, NC

Modelling and projecting deforestation and forest fragmentation in New-Caledonia

Ghislain Vieilledent^{1,2}

[1] JRC D.1 Bio-economy unit, [2] Cirad UMR AMAP

Data 00000 Modelling 0000 Results 00000000 New-Caledonia

- Context
- Objectives
- 2 Data
 - Historical deforestation
 - Explicative variables
- 3 Modelling
 - Statistical model
 - Software

- 4 Results
 - Parameters
 - Spatial probability
- 5 New-Caledonia
 - Forest cover change
 - Perspectives

Data 00000 Modelling 0000 Results 00000000 New-Caledonia

- Context
- Objectives
- Data
 - Historical deforestation
 - Explicative variables
- 3 Modelli
 - Statistical model
 - Software

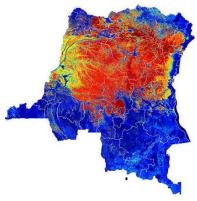
- 4 Results
 - Parameters
 - Spatial probability
- 5 New-Caledonia
 - Forest cover change
 - Perspectives

Introduction OOO

Data DOOOO Modelling 0000 Results 00000000 New-Caledonia

Long term projections

- Tropical forests shelter most of the terrestrial biodiversity and carbon stocks
- They are currently being deforested at rates close to 1%/yr

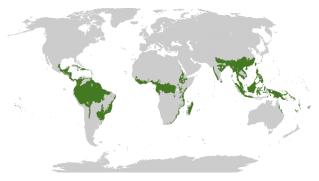

 $\begin{array}{c} \textbf{2005-2015} \text{ deforestation in} \\ \textbf{Democratic Republic of the Congo} \end{array}$

What happens when you project annual deforestation on the medium or long term (2050-2100)?

Jata 20000 Modelling 0000 Results 00000000 New-Caledonia

Spatial projections

- Not all forests are equally threathened
- And biodiversity and forest carbon stocks vary spatially


Aboveground biomass in Democratic Republic of the Congo

What are the consequences of long term defore station for biodiversity and CO2 emissions ?

Introduction	Data	Modelling	Results	New-Caledonia
000●	00000	0000	0000000	00000000

Objectives

- Modelling the deforestation process spatially
- Deriving high-resolution maps of the spatial probability of deforestation
- Projecting forest cover change until 2050 under a business-as-usual scenario
- At the pantropical scale

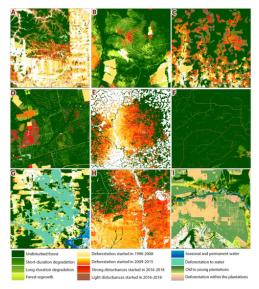
Data •0000 Modelling 0000 Results 00000000 New-Caledonia

- Context
- Objectives
- Data
 - Historical deforestation
 - Explicative variables
- 3 Modelli
 - Statistical model
 - Software

- 4 Results
 - Parameters
 - Spatial probability
- 5 New-Caledonia
 - Forest cover change
 - Perspectives

Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	0000000	00000000

Historical deforestation


- Wall-to-wall map of **tropical moist forest cover change** at 30 m resolution from 1990 to 2018
- Using the 37-years full Landsat satellite archive and Google Earth Engine
- Time-series analysis at the pixel scale using a complex decision tree based on expert knowledge

Introduction	Data	Modelling
0000	0000	0000

New-Caledonia

Historical deforestation

Introduction	Data	Modelling	Results
0000	00000	0000	0000

New-Caledonia

Historical deforestation

- Vancutsem Ch., F. Achard , J.-F. Pekel , G. Vieilledent, S. Carboni , D. Simonetti , J. Gallego. Long-term monitoring of the tropical moist forests dynamics reveals unprecedented deforestation rates. Submitted to *Nature Communications*.
- Hansen et al. 2013 : underestimated deforestation rates in Africa (small scale mosaic deforestation)
- Response variable : deforestation on 2005-2015

Introduction	Data	Modelling	Results	New-Caledo
0000	0000●	0000	0000000	0000000

Explicative variables

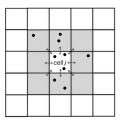
• Variable types : landscape, accessibility, protection status

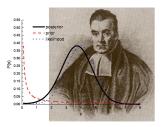
Product	Source	Variable derived	Unit	Resolution (m)
Deforestation maps (2005-2015)	Vancutsem et al. (1)	forest/non-forest	-	30
		distance to forest edge	m	30
		distance to previous deforestation	m	30
Digital Elevation Model	SRTM v4.1 CSI-CGIAR (2)	altitude	m	90
		slope	0	90
Highways	OSM - Geofabrik (3)	distance to roads	m	150
Places		distance to towns	m	150
Waterways		distance to river	m	150
Protected areas	WDPA (4)	presence of protected area	-	30

(1) Vancutsem et al., (2) http://srtm.csi.cgiar.org,
(3) http://www.geofabrik.de, (4) http://protectedplanet.net

Data 00000 Modelling ●○○○ Results 00000000 New-Caledonia

- Context
- Objectives
- Data
 - Historical deforestation
 - Explicative variables
- 3 Modelling
 - Statistical model
 - Software


- 4 Results
 - Parameters
 - Spatial probability
- 5 New-Caledonia
 - Forest cover change
 - Perspectives



Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	0000000	00000000

Statistical model

- $Y_{ij} \in \{0,1\} \sim \mathcal{B}ernoulli(heta_{ij})$
- $logit(\theta_{ij}) = X_i\beta + \rho_j$
- Autocorrelated spatial random effects ρ_j (10 km) to account for **unmeasured** or **unmeasurable** factors : population density, soil type, geographical barriers, law enforcement locally
- Structure spatially the **residual variability** that is not explained by the model's variables
- Hierarchical Bayesian framework

Introduction	Data	Modelling	Res
0000	00000	0000	00

New-Caledonia

Statistical model

- One model per country
- 40,000 sample points (balanced sampling deforested/non-deforested areas)
- Variable selection (statistical significance + process coherence)

troduction 0000	Data 00000	Modelling ○○●		Results 00000000	New-Caleo
Software					
📮 ghislainv / fores	tatrisk			O Unwatch - 3 ★ Sta	ar 6 Ÿ Fork 3
<> Code (1) Issue	s 8 j) Pull requests 0	Projects 0 📰 Wik	i 🗊 Security 📊 Ins	ights 🔅 Settings	
'forestatrisk' Python	package to model and fore	cast tropical deforestation	on		Edit
deforestation-model	python deforestation-probabil	ity deforestation Manag	e topics		
257 commits	₽ 1 branch	S 1 release	🚀 1 environment	1 contributor	து GPL-3.0
Branch: master -	ew pull request		Create new fil	e Upload files Find File	Clone or download -
ghislainv New tuto				Latest comr	nit cd54275 7 days ago
E C	U	pdate			last month
docs	Ν	lew tuto			7 days ago
in forestatrisk	u	rllib for Python3			last month

- forestatrisk Python package : https://github.com/ghislainv/forestatrisk
- Rasters processed by chuncks : high resolution (30 m, large spatial scale)
- Fast, without memory issues
- Parallel computation : one node per country

Data 00000 Modelling 0000 Results

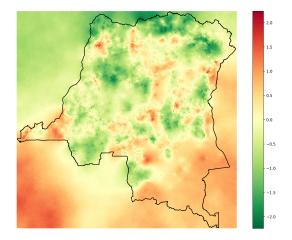
New-Caledonia

- Context
- Objectives
- Data
 - Historical deforestation
 - Explicative variables
- 3 Modelli
 - Statistical model
 - Software

- 4 Results
 - Parameters
 - Spatial probability
 - New-Caledonia
 - Forest cover change
 - Perspectives

Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	000000	00000000

Parameters

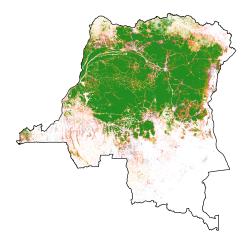

Parameter values : β and variance V_{ρ} of the spatial random effects.

Binomial logistic (Model: I(1 - fcc2 scale(dist_edge) + Posteriors:	23) + trial	~ 1 + C(pa)	+ scale(sl		
	Mean	Std	CI low	CI high	
Intercept	-4.64	0.155	-4.92	-4.37	
C(pa)[T.1.0]	-0.206	0.101	-0.402	-0.00777	
<pre>scale(slope)</pre>	-0.0505	0.028	-0.113	0.00411	
<pre>scale(dist_defor)</pre>	-5.64	0.304	-6.21	-5.08	
scale(dist_edge)	-7.19	0.315	-7.76	-6.54	
<pre>scale(dist_road)</pre>	-0.22	0.0416	-0.303	-0.14	
<pre>scale(dist_town)</pre>	-0.171	0.042	-0.258	-0.0922	
<pre>scale(dist_river)</pre>	-0.0664	0.0311	-0.124	0.00367	
Vrho		0.304	2.32	3.39	
Deviance	1.25e+04	89.6	1.23e+04	1.27e+04	

- Set of parameters for each country.
- Each effect can be easily interpreted.
- Effects can be compared between countries (efficiency of the protected areas, effect of road infrastructures).

Data 00000 Modelling 0000 Results ○O●○○○○○ New-Caledonia

Spatial random effects

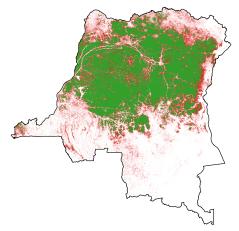


Then interpolated at 1km.

Introduction	Data	Modelling
0000	00000	0000

New-Caledonia

Spatial probability of deforestation


ntroduction	Data
0000	000

)

Modelling 0000 Results

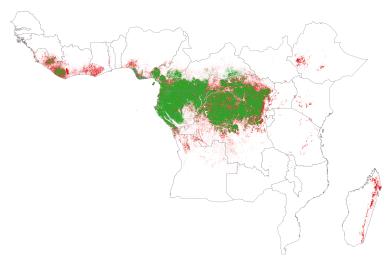
New-Caledonia

Future forest cover

Projected forest cover change in **2015-2050** under a business-as-usual scenario.

 BAU : historical deforestation (ha/yr) observed on $\mathbf{2005}\text{-}\mathbf{2015}.$

Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	00000000	00000000


African continent

Spatial probability of deforestation.

Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	00000000	00000000


African continent

Forest cover change in 2015-2050, BAU scenario 2005-2015.

Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	000000	00000000

African continent

- No more moist forests in 2050 : West-African countries except Liberia, East-African countries including Madagascar
- **Remaining forest block** : Congo, Gabon, Equatorial-Guinea, Cameroon
- Highly fragmented forest : Democratic Republic of the Congo
- Two blocks of forest on both sides of the Congo River

Data 00000 Modelling 0000 Results 00000000 New-Caledonia

- Context
- Objectives
- Data
 - Historical deforestation
 - Explicative variables
- 3 Modelli
 - Statistical model
 - Software

- 4 Results
 - Parameters
 - Spatial probability
- 5 New-Caledonia
 - Forest cover change
 - Perspectives

Introduction	Data	Modelling
0000	00000	0000

New-Caledonia

Historical forest cover change

- Past deforestation 2000-2010-2019
- Map : https://forestatrisk.cirad.fr/newcal
- Forest cover AND deforestation

Introduction	Data	Modelling	R
0000	00000	0000	0

New-Caledonia

Comparison for New-Caledonia

Forest cover :

- FAO statistics (825,000 ha)
- $\bullet~{\sf CIRAD-IAC}$: Digitized map at 1/3000 from 2008 aerial photos

Deforestation :

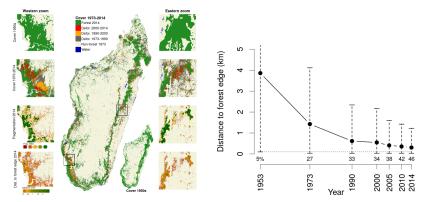
- FAO statistics (0 ha/yr)
- OEIL : fires, in 2017 24,145 ha, 1/3 in forest

Introduction	Data	Modelling
0000	00000	0000

New-Caledonia

Causes of deforestation

- Effects of mines and ultramafic soils
- Deforestation causes : mines vs. fires



Introduction	Data	Modelling
0000	00000	0000

New-Caledonia

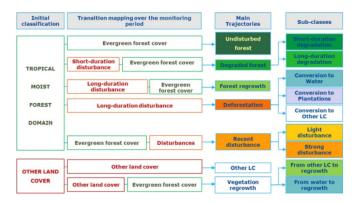
Fragmentation

- Fragmentation : past, future
- Distance to forest edge
- Amount of forest habitat in the neighborhood

Introduction	Data	Modelling	Results	New-Caledonia
0000	00000	0000	0000000	000000000

Impact on biodiversity

- Effect of deforestation and fragmentation on biodiversity
- Support for decision makers


 β diversity in Madagascar

Introduction	Data	Modelling	F
0000	00000	0000	0

New-Caledonia

Forest gain

Forest regeneration

ghislain.vieilledent@cirad.fr

European Commission

