

Modelling and forecasting tropical deforestation: advances and perspectives

Joint Research Centre

the European Commission's in-house science service

Research Centre

ec.europa.eu/jrc

JRC – IFORCE meeting – September, 7th 2013

Modelling and forecasting tropical deforestation: advances and perspectives

Ghislain Vieilledent^{1,2}

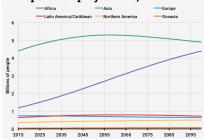
[1] JRC D.1 Bio-economy unit, [2] Seconded National Expert from Cirad

- in Africa
- Model
- Results
- Valorisation
- 2 forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice
 - Perspectives

- in Africa
- Model
- Results
- Valorisation
- forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

- 3 Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice
- 4 Perspectives

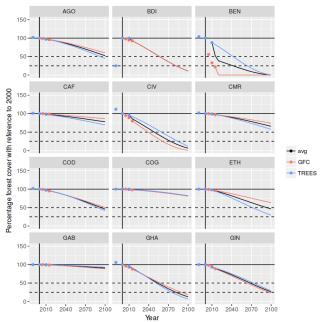


- in Africa
- Model
- Results
- Valorisation
- forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

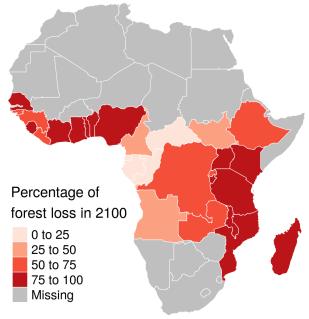
- 3 Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice
- 4 Perspectives

Model

- The fate of African tropical forests
- Associated to demographic explosion
- Data on deforestation :
 - 1. JRC : 1990-2000-2010
 - 2. GFC : 2000-2005-2010-2015
- $\log D = \beta_0 + \beta_1 \log F + \beta_2 \log P$
- Projection of forest cover in 2050, 2100


Population projections, 2015-2100

Deforestation and demography in Africa


- Model
- Results
- Valorisation
- forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

- 3 Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice
- 4 Perspectives

Model averaging per country

Percentage of forest loss 21st century

Deforestation and demography in Africa

- Model
- Results
- Valorisation
- forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

- 3 Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice
- 4 Perspectives

Valorisation

- Scientific article
- Integration of Roadless data on deforestation?
- Use of the results for future deforestation scenario in Africa
- $\bullet\,$ Predictions in percentage of forest loss : $\sim\,$ independent of forest definition

- in Africa
- Model
- Results
- Valorisation
- forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

- 3 Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice
- Perspectives

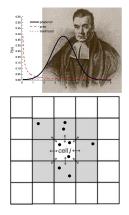
- in Africa
- Model
- Results
- Valorisation

2 forestatrisk Python module

Functionalities

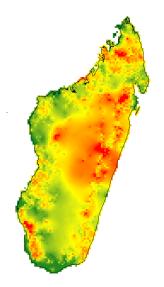
- Improvements
- Model performance

3 Forecasting spatial deforestation spatially


- Pantropical scale
- Computational challenge
- Scenario choice

Perspectives

forestatrisk Python module functionalities


- Spatial probability of deforestation
- $logit(\theta_i) = f(spatial factors_i) + \rho_j$
- Factors : accessibility (dist. towns, roads, villages), landscape (dist. forest edge), land-tenure (protected areas)
- ρ_j : spatial random effect
- https:

//github.com/ghislainv/forestatrisk

Spatial random effects

- Hotspots of deforestation
- Not explained by the fixed env. factors

Spatial probability of deforestation

- Computed at 30 m resolution
- Greener : lower probability
- Darker red : higher probability

Future forest cover

- Green : residual forest in 2050
- Red : deforested area 2010-2050

- in Africa
- Model
- Results
- Valorisation

2 forestatrisk Python module

- Functionalities
- Improvements
- Model performance

3 Forecasting spatial deforestation spatially

- Pantropical scale
- Computational challenge
- Scenario choice

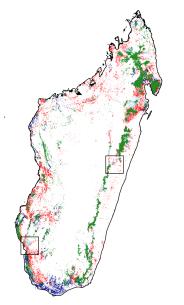
Perspectives

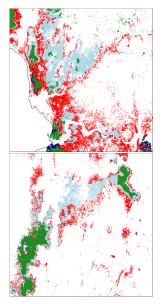
Improvements

- Python 2.7 and Python 3.x compatible
- Spatial random effects limited to country border
- Set of new functions for model validation
- Can be used from R with reticulate

- in Africa
- Model
- Results
- Valorisation

2 forestatrisk Python module


- Functionalities
- Improvements
- Model performance


3 Forecasting spatial deforestation spatially

- Pantropical scale
- Computational challenge
- Scenario choice

Perspectives

Comparing predictions with GLM

Performance estimated on an independent data-set of 20,000 points

model	Deviance	OA	Kappa
null	0	50	0
GLM	8	62	24
iCAR	30	79	58
full	100	100	100

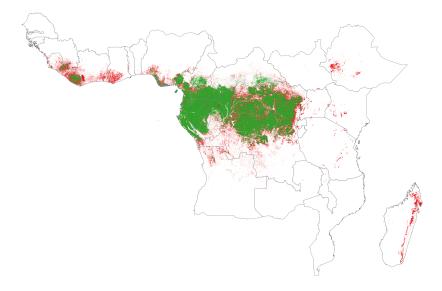
Model validation

- Map of probability of deforestation in 2010 + known deforested area on 2010-2014
- Observed vs. projected deforestation on 2010-2014
- $\bullet\,$ Area deforested in 10 $\times\,$ 10 km areas
- Pearson's correlation

model	Cor	
GLM	12	
iCAR	31	

- Model
- Results
- Valorisation
- - Eunctionalities
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice



- Model
- Results
- Valorisation
- - Eunctionalities
 - Improvements
 - Model performance

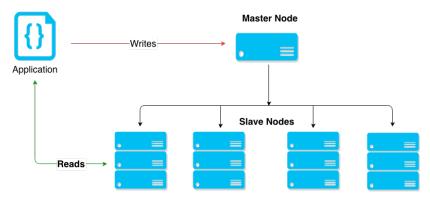
- Forecasting spatial deforestation spatially
 - Pantropical scale
 - •
 - Scenario choice

Africa

- Map of deforestation probability in 2015
- Future forest cover in 2050, 2100

Asia

- 11 countries in tropical Asia
- Including MMR, THA, KHM, LAO, VNM (ReCaREDD focus countries)
- Ex. Vietnam in 2050 (half current deforestation rate)



- Model
- Results
- Valorisation
- - Eunctionalities
 - Improvements
 - Model performance

- Forecasting spatial deforestation spatially
 - Pantropical scale
 - Computational challenge
 - Scenario choice

Computational challenge

- Use of Google Cloud Computing (\neq GEE)
- Cluster of small machines with some cores
- Parrallelization : one country per machine

- Model
- Results
- Valorisation
- - Eunctionalities
 - Improvements
 - Model performance

Forecasting spatial deforestation spatially

- Pantropical scale
- Computational challenge
- Scenario choice

Scenario choice

- "business-as-usual"
- demographic growth for African country
- mitigation scenario (50% deforestation)

- in Africa
- Model
- Results
- Valorisation
- forestatrisk Python module
 - Functionalities
 - Improvements
 - Model performance

3 Forecasting spatial deforestation spatially

- Pantropical scale
- Computational challenge
- Scenario choice

Perspectives

- 1. Deforestation-demography study
 - consolidate the results
 - publish a first paper
- 2. forestatrisk Python module
 - polish the code
 - publish a methodological paper advocating our model choice
- 3. Pantropical map
 - re-run computation with new version of the model
 - extend projections to the pantropical world
 - produce maps for alternative scenario of intensity

... Thank you for attention ...

