AMAP theme Dyafor – October, 5th 2021

Not all species will migrate poleward as the climate warms: the case of the seven baobab species in Madagascar.

Ghislain VIEILLEDENT¹ Mario M. TAGLIARI^{1,2} Jonathan LENOIR³

[1] Cirad UMR AMAP, [2] University of Santa Catarina ECOHE [3] University of Picardie EDYSAN

Methods 00000

Outline

Results 00000000 Discussion 00000

2 Methods

Methods 00000

Outline

Results 00000000 Discussion 00000

2 Methods

lsotherms

Species should move towards the poles and upslope to track shifting isotherms as climate warms :

- Temperature is an easy to measure climatic variable (Fahrenheit, 1724).
- Temperature is a strong determinant of species biology and distribution.
- Concept of isotherm (Alexander von Humboldt / 1769–1859).

Results 00000000

Temperature and CO₂

• Temperature is strongly correlated with CO₂ concentration in the atmosphere.

Methods 00000 Results 00000000 Discussion 00000

- Species should move poleward and upslope : is it always true?
- Case of the seven baobab species of Madagascar

Results 00000000 Discussion 00000

Baobabs of Madagascar

- Seven species out of the height baobab species existing on Earth.
- Six are endemic to Madagascar.
- Emblematic species (Baobabs' Alley), representative of the biodiversity of Madagascar.
- High endemism (>85%) in almost all taxonomic groups.

Methods •0000

Outline

Results 00000000 Discussion 00000

2 Methods

Species distribution models

- Species distribution models.
- 1. Species climatic niche, 2. Current distribution, 3. Future distribution (2055, 2085).
- **Ensemble modelling** : four statistical algorithms (GLM, GAM, RF, MaxEnt).
- **Ensemble forecasting** : three Global Circulation Models (NorESM1-M, GISS-E2-R, HadGEM2-ES).
- **Two dispersal scenarios** : full dispersal (possible dispersal outside current range), zero dispersal (no dispersal outside current range).
- Presence : the majority of the models predicts a presence. Uncertainty : number of models predicting a presence.

Occurrence data

- Large occurrence data-base.
- Since 2000, field inventories and photo-interpretation of satellite images.

Discussion 00000

Climatic data

- Four climatic variables : mean annual temperature (tmean, °C), annual precipitation (precip, mm/yr), temperature seasonality (tseas, °C sd x 1000), climatic water deficit (cwd, mm/yr).
- Two climatic scenarios : RCP 8.5 and RCP 4.5.
- WorldClim data.

Discussion 00000

Ecological interpretation of SDMs

General use of SDMs in the studies on climate change :

- Correlative models used to derive maps of species range.
- Species vulnerability to climatic change (range contraction or expansion).
- Not much ecological interpretation of the results.

We wanted to push the interpretation further :

- Climatic anomalies in space in the future.
- Variable importance in determining species niche.
- Climate change in current species range.
- Species range shift in latitude and elevation.
- Relationship between temperature and latitude/elevation in Madagascar.

Methods 00000 Results •0000000 Discussion 00000

Outline

2 Methods

Discussion

Results

Discussion 00000

Range contraction

- Four species will experience a strong range contraction (>70%) under RCP 8.5 in 2085.
- Out of these four species, three are threatened by a change in temperature seasonality.

Results 00000000 Discussion 00000

Climatic anomalies

Results 00000000 Discussion 00000

Variable importance

TABLE 2 Relative importance of the four bioclimatic variables in determining species distribution

Species	Mean annual temperature	Temperature seasonality	Precipitation	Climatic water deficit	Most important variables (first and second)
A. digitata	0.364	0.633	0.372	0.552	Tseas/Cwd
A. grandidieri	0.526	0.239	0.550	0.110	Prec/Tmean
A. madagascariensis	0.651	0.824	0.309	0.153	Tseas/Tmean
A. perrieri	0.369	0.954	0.336	0.518	Tseas/Cwd
A. rubrostipa	0.320	0.330	0.360	0.730	Cwd/Prec
A. suarezensis	0.211	0.987	0.620	0.150	Tseas/Prec
A. za	0.471	0.309	0.625	0.168	Prec/Tmean

Results 00000000 Discussion 00000

Climate change in current species range

Discussion 00000

Species range shift in latitude and elevation

Methods 00000 Results 0000000 Discussion 00000

Relationship between temperature and latitude/elevation

Methods 00000

Outline

Results 00000000 Discussion

2 Methods

Species range shift

- Some species might move equatorward to track change in temperature seasonality.
- Range shift direction depends on several things : species climatic niche (variable importance), climatic anomalies in space in the future.
- It is not contradictory to move both equatorward and upslope.

Discussion

Generalization to the tropics

- General increase of temperature seasonality in the tropics.
- Tropical species usually adapted to low seasonality (cf. tree growth, phenology).

Methods 00000 Results 00000000 Discussion 00000

• What does it mean an increase in seasonality under climate change? (much warmer rainy season or colder dry season ?)

... Thank you for attention ... https://ecology.ghislainv.fr/presentations

A CONTRACTOR OF THE OWNER OF THE

