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Florebo quocumque ferar

“I will flower everywhere I am planted”
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Abstract

Species distribution models (SDM) are useful tools to explain or predict species range from
various environmental factors. SDM are thus widely used in conservation biology. Based
on the observations of the species in the field (occurence or abundance data), SDM face
two major problems which lead to bias in models’ results: imperfect detection and spatial
correlation of the observations.

At the present time, there is a lack of statistical tools to analyse large occurence or
abundance data-sets (typically with tens of hundreds observation points) taking into ac-
count both imperfect detection and spatial correlation.

Here, we present the hSDM R package wich aims at providing user-friendly statisti-
cal functions to fill this gap. Functions were developped through a hierarchical Bayesian
approach. They call a Metropolis-within-Gibbs algorithm coded in C to estimate model’s
parameters. Using compiled C code for the Gibbs sampler reduce drastically the compu-
tation time.

By making these new statistical tools available to the scientific community, we hope to
democratize the use of more complex, but more realistic, statistical models for increasing
knowledge in ecology and conserving biodiversity.

Keywords: R, C code, site-occupancy models, CAR process, spatial autocorrelation, biodiver-

sity, SDM, niche modelling, detection probability, counts data, presence-absence, false absence,

uncertainty, hierachical Bayesian models, Metropolis, MCMC, Gibbs sampler
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CHAPTER 1

Introduction

1.1 Species distribution models

Biogeography is the study of the distribution of species over space and time and biogeog-
raphers try to understand the factors determining a species distribution (Smith, 1868;
Wallace, 1876). A species distribution is often represented with a map (Wallace, 1876).
This knowledge on the ecology of the species can be used for several applications such as
conservation biology (Thuiller, 2014).

Species distribution modelling (alternatively known as “environmental niche modelling”,
“ecological niche modelling”, “predictive habitat distribution modelling”, and “climate en-
velope modelling”) refers to the process of using computer algorithms to predict the dis-
tribution of species in geographic space on the basis of a mathematical representation of
their known distribution in environmental space (i.e. the realized ecological niche). The
environment is in most cases represented by climate data (such as temperature, and pre-
cipitation), but other variables such as soil type and land cover can also be used. Species
distribution models (SDM) allow estimating the probability of presence or abundance of a
species on a large geographical range using a limited number of species observations (Elith
& Leathwick, 2009; Guisan & Zimmermann, 2000). Species observations can be occurence
data (presence-absence data or presence only data) or abundance data (also known as
count data).
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1.2 Imperfect detection and spatial correlation of the

observations

When considering presence-absence or abundance data for species distribution modelling,
strong assumptions are usually made (Araujo & Guisan, 2006; Guisan & Thuiller, 2005;
Sinclair et al., 2010). Among these assumptions, two can lead to biased estimates of species
distribution. The first one deals with imperfect detection and the second one with spatial
correlation of the observations.

Regarding imperfect detection, occurrence of a species is typically not observed per-
fectly. Species traits, survey-specific conditions and site-specific characteristics may influ-
ence species detection probability which is often < 1 (Chen et al., 2013). Thus, observations
might include false absences. For example, the habitat can be suitable and the species is
present but individuals have not been seen during the census. Or the habitat can be suit-
able but the species has not dispersed yet to the site (typical example for plant species,
see Latimer et al. (2006)) or was not present on the site at the moment of the observation
(typical example for animal species such as birds, see Kéry et al. (2005)). Treating observed
occurrence and species distributions as the true occurrence and distribution, failing to make
amendments for imperfect detection, may lead to problems in species distribution stud-
ies, habitat models and biodiversity management (Kéry & Schmidt, 2008; Lahoz-Monfort
et al., 2014; Latimer et al., 2006).

Regarding spatial correlation, most species present geographical patchiness (positive
spatial autocorrelation). This pattern is often driven by multiple causes that may be asso-
ciated to exogenous environmental factors such as climate or soil (which might be partly
taken into account in species distribution models), but also to endogeneous biotic pro-
cesses, called contagious processes, such as dispersal, migration, conspecific attraction or
mortality which are rarely considered (Dormann et al., 2007; Legendre, 1993; Lichstein
et al., 2002; Sokal & Oden, 1978). Due to the contagious biotic processes, the presence or
abundance of a species at one site is influenced by the presence or abundance of the species
at surrounding sites. A species might be present at a site where the environment is less
suitable because of the presence of the species at neighbouring sites where the environment
is higly suitable. Thus, ignoring spatial correlation may lead to biased conclusions about
ecological relationships (Lichstein et al., 2002) and even invert the slope of relationships
from non-spatial analysis in some particular cases (Kühn et al., 2006). In addition to
its ecological significance, spatial autocorrelation is problematic for classical species dis-
tribution models which assume independently distributed errors (Dormann et al., 2007;
Legendre, 1993; Lichstein et al., 2002).
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1.3 Methods and software to account for imperfect

detection and spatial correlation

New classes of models, called site-occupancy models (MacKenzie et al., 2002) or zero
inflated binomial (ZIB) models (Latimer et al., 2006) for presence-absence data and N-
mixture models (Royle, 2004) or zero inflated Poisson (ZIP) models for abundance data
(Flores et al., 2009), were developed to solve the problems created by imperfect detection.
These models combine two processes, an ecological process which describes habitat suit-
ability and an observation process which takes into account imperfect detection. Because
they mix probability distributions to represent the suitability and observation processes,
these models have also been called mixture models. Mixture models use information from
repeated observations at several sites to estimate detectability. Detectability may vary
with site characteristics (e.g., habitat variables) or survey characteristics (e.g., weather
conditions), whereas suitability relates only to site characteristics.

One additional point regarding site-occupancy models is that they form a unifying
framework for a very large array of capture-recapture models to estimate population size in
animal ecology (Nichols, 1992): using parameter-expanded data augmentation (Royle et al.,
2007), most models for population size, survival, recruitment and similar demographic
quantities (presented in detail in standard references such as Williams et al. (2002), Royle &
Dorazio (2008) and Kéry & Schaub (2012)) can be cast into the framework of an occupancy
model and this makes their fitting much easier.

Several studies have demonstrated the advantages of site-occupancy and N-mixture
models over classical models which do not consider imperfect detection. These studies
have focused on the distribution of various plant or animal species in marine and terrestrial
ecosystems (see Chen et al. (2013); Latimer et al. (2006) for plants, Dorazio et al. (2006);
Kéry et al. (2005); Rota et al. (2011); Royle (2004) for birds, Kéry et al. (2010) for insects,
Bailey et al. (2004); Chelgren et al. (2011); MacKenzie et al. (2002) for amphibians, Monk
(2014) for fishes, and Gray (2012); Poley et al. (2014) for mammals).

Several softwares can be used to fit site-occupancy and N-mixture models (Table 1.2).
Some are based on the maximum likelihood approach (such as the widely used free Windows
programs MARK and PRESENCE and the R package unmarked) while other are based
on the hierarchical Bayesian approach (such as WinBUGS and OpenBUGS programs).

9



S
of

tw
ar

es
S
o
cc

N
m

ix
S
p

A
p
p
ro

ac
h

O
S

R
ef

er
en

ce
U

R
L

P
R

E
S
E

N
C

E
1

1
0

M
L

M
S
-W

M
ac

K
en

zi
e

(2
00

6)
P

R
E

S
E

N
C

E

M
A

R
K

1
1

0
M

L
M

S
-W

W
h
it

e
&

B
u
rn

h
am

(1
99

9)
M

A
R

K

E
-S

U
R

G
E

1
0

0
M

L
M

S
-W

C
h
o
q
u
et

et
al
.

(2
00

9)
E

-S
U

R
G

E

u
n
m

ar
ke

d
1

1
0

M
L

cr
os

s-
p
la

tf
or

m
F

is
ke

&
C

h
an

d
le

r
(2

01
1)

u
n
m

ar
ke

d

st
o
cc

1
0

1
B

ay
es

ia
n

cr
os

s-
p
la

tf
or

m
J
oh

n
so

n
et

al
.

(2
01

3)
st

o
cc

J
A

G
S

1
1

0
B

ay
es

ia
n

cr
os

s-
p
la

tf
or

m
J
A

G
S

S
ta

n
1

1
0

B
ay

es
ia

n
cr

os
s-

p
la

tf
or

m
S
ta

n
D

ev
el

op
m

en
t

T
ea

m
(2

01
4)

S
ta

n

W
in

B
U

G
S

1
1

1
B

ay
es

ia
n

M
S
-W

L
u
n
n
et

al
.

(2
00

9)
W

in
B

U
G

S

O
p

en
B

U
G

S
1

1
1

B
ay

es
ia

n
cr

os
s-

p
la

tf
or

m
L

u
n
n
et

al
.

(2
00

9)
O

p
en

B
U

G
S

h
S
D

M
1

1
1

B
ay

es
ia

n
cr

os
s-

p
la

tf
or

m
h
S
D

M

T
ab

le
1.

2:
S
o
ft

w
a
re

s
a
v
a
il

a
b
le

fo
r

m
o
d
e
li

n
g

sp
e
ci

e
s

d
is

tr
ib

u
ti

o
n

in
cl

u
d

in
g

im
p

e
rf

e
ct

d
e
te

ct
io

n
.

10

http://www.mbr-pwrc.usgs.gov/software/presence.html
http://www.phidot.org/software/mark/
http://www.cefe.cnrs.fr/biostatistiques-et-biologie-des-populations/logiciels
http://CRAN.R-project.org/package=unmarked
http://CRAN.R-project.org/package=stocc
http://mcmc-jags.sourceforge.net/
http://mc-stan.org
http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
http://www.openbugs.net
http://hSDM.sf.net


A variety of methods have been developed to correct for the effects of spatial autocor-
relation in species distribution models based on occurence or abundance data (Cressie &
Cassie, 1993; Dormann et al., 2007; Keitt et al., 2002; Miller et al., 2007). In their review
article, Dormann et al. (2007) described six different statistical approaches to account for
spatial autocorrelation: autocovariate regression; spatial eigenvector mapping; generalised
least squares; autoregressive models and generalised estimating equations.

Several studies have demonstrated the advantages of these mehods focusing on a variety
of plant or animal species (see Gelfand et al. (2005); Kühn et al. (2006); Latimer et al.
(2006) for plants, Lichstein et al. (2002) for birds, and Johnson et al. (2013); Poley et al.
(2014) for mammals).

Among the methods available to account for spatial autocorrelation, conditional au-
toregressive (CAR) models, which incorporate spatial autocorrelation through a neigh-
bourhood structure, are commonly implemented in statistical softwares (Dormann et al.,
2007). The most commonly used softwares to implement CAR models are OpenBUGS
and WinBUGS softwares (Lunn et al., 2009) which have in-built functions (car.normal
and car.proper) to describe the CAR process. CAR models can also be implemented
in BayesX (Brezger et al., 2005) and in the following R packages: R-INLA (Rue et al.,
2009), CARBayes (Lee, 2013), stocc (for binary data only), spatcounts (for count data
only), CARramps (for Gaussian data only), and spdep (for Gaussian data only) (Ta-
ble 1.4).
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1.4 Objectives of the hSDM R package

Among the available statistical programs, only OpenBUGS can be used on any operating
system to fit both site-occupancy or N-mixture models including also a spatial autocor-
relation process (Table 1.2 and Table 1.4). One problem is that OpenBUGS, for such
models, cannot handle large data-sets (typically, data-sets with tens of thousands sites).
Moreover, for smaller data-sets, models can be fitted but computation time can be long due
to the fact that the OpenBUGS code is interpreted and not compiled. For this reason,
we decided to develop the hSDM (for hierarchical Bayesian species distribution models) R
package. The stocc R package (Johnson et al., 2013; Poley et al., 2014), which can handle
binary data only, has been developed for the same reasons. The hSDM package allows
the user to fit mixture models which take into account imperfect detection (site-occupancy,
N-mixture, ZIB and ZIP models) and account for spatial autocorrelation. Spatial autocor-
relation is represented through an intrinsic CAR process (Besag et al., 1991). Functions
in the hSDM R package use an adaptive Metropolis algorithm (Metropolis et al., 1953;
Robert & Casella, 2004) in a Gibbs sampler (Casella & George, 1992; Gelfand & Smith,
1990) to obtain the posterior distribution of model’s parameters. The Gibbs sampler is
written in C code and compiled to optimize computation efficiency. Thus, the hSDM
package can be used for very large data-sets while reducing drastically the computation
time.

In this vignette, we present examples to illustrate the use of the hSDM package in the
R statistical environment (R Development Core Team, 2014). Examples use virtual or real
data-sets. Results obtained with functions in the hSDM package are compared with the
results obtained with other softwares and models.
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CHAPTER 2

Occurence data

2.1 Binomial model

2.1.1 Mathematical formulation

Let’s consider a random variable yi representing the total number of presences of a species
after several visits vi at a particular site i. Random variable yi can take values from 0
to vi and can be assumed to follow a Binomial distribution having parameters vi and θi
(Eq. 2.1). Parameter θi can be interpreted as the probability of presence of the species
at site i . Using a logit link function, θi can be expressed as a linear model combining
explicative variables Xi and parameters β (Eq. 2.1).

(2.1)
yi ∼ Binomial(vi, θi)

logit(θi) = Xiβ

Using this statistical model, we aim at representing a “suitability process”. Given
environmental variables Xi, how much is habitat at site i suitable for the species under
consideration? Parameters β indicate how much each environmental variable contributes
to the suitability process. Like every other function in the hSDM R package, function
hSDM.binomial() estimates the parameters β of such a model in a Bayesian framework.
Parameter inference is done using a Gibbs sampler including a Metropolis algorithm. The
Gibbs sampler is coded in the C language to optimize computation efficiency.
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2.1.2 Data generation

To explore the characteristics of the hSDM.binomial() function, we generate a virtual
data-set on the basis of the Binomial model described above (Eq. 2.1). In the most general
case, sites are visited once (vi = 1). Thus, the random variable yi follows a Bernoulli
distribution of parameter θi and habitat characteristics Xi are fixed for site i. We generate
a virtual data-set in this particular case. For data generation, we import virtual altitudinal
data in R. Altitude is used as an explicative variable to determine habitat suitability, i.e.
the probability of presence of a virtual species. Altitudinal data are loaded at the same
time as the hSDM R package (data frame altitude in the working directory).

These data are transformed into a raster object using the function rasterFromXYZ()

from the raster package. The raster has 2500 cells (50 columns and 50 rows) and the
altitude ranges roughly between 100 and 600 m (Fig. 2.1). For linear models, explicative
variables are usually centered and scaled to facilitate inference and interpretation of model
parameters.

# Load altitudinal data and create raster

library(raster)

library(hSDM)

data(altitude,package="hSDM")

alt.orig <- rasterFromXYZ(altitude)

extent(alt.orig) <- c(0,50,0,50)

plot(alt.orig)

# Center and scale altitudinal data

alt <- scale(alt.orig,center=TRUE,scale=TRUE)

plot(alt)

A linear model including altitude (variable denoted A) is used to compute the proba-
bility of presence of the species (Eq. 2.2).

(2.2)
yi ∼ Bernoulli(θi)

logit(θi) = β0 + β1Ai

We fix the parameters to β0 = −1 and β1 = 1. The species has a higher probability of
presence at higher altitudes (Fig. 2.2).

# Target parameters

beta.target <- matrix(c(-1,1),ncol=1)

# Matrix of covariates (including the intercept)

ncells <- ncell(alt)

X <- cbind(rep(1,ncells),values(alt))

# Probability of presence as a linear function of altitude

logit.theta <- X %*% beta.target

16
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Figure 2.1: Altitudinal data. Original values (in m) on the left. Centered and scaled
values on the right.

theta <- inv.logit(logit.theta)

# Coordinates of raster cells

coords <- coordinates(alt)

# Transform the probability of presence into a raster

theta <- rasterFromXYZ(cbind(coords,theta))

# Color palette for probability plots

colRP <- colorRampPalette(c("white","yellow","orange",

"red","brown","black"))

# Plot the probability of presence

brks <- seq(0,1,length.out=100)

arg <- list(at=seq(0,1,length.out=5), labels=c("0","0.25","0.5","0.75","1"))

nb <- length(brks)-1

plot(theta,main="Initial probabilities",col=colRP(nb),

breaks=brks,axis.args=arg,zlim=c(0,1))

We can assume a number n of sites in the landscape where we have been able to observe
or not the presence of the species. We can simulate the presence or absence of the species
at these n sites given our model (Fig. 2.3).

# Number of observation sites

nsite <- 200

# Set seed for repeatability

seed <- 1234

# Sample the observations in the landscape
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Figure 2.2: Probability of presence.

set.seed(seed)

x.coord <- runif(nsite,0,50)

set.seed(2*seed)

y.coord <- runif(nsite,0,50)

library(sp)

sites.sp <- SpatialPoints(coords=cbind(x.coord,y.coord))

# Extract altitude data for sites

alt.sites <- extract(alt,sites.sp)

# Compute theta for these observations

X.sites <- cbind(rep(1,nsite),alt.sites)

logit.theta.site <- X.sites %*% beta.target

theta.site <- inv.logit(logit.theta.site)

# Simulate observations

visits <- rep(1,nsite) # One visit per site for the moment

set.seed(seed)

Y <- rbinom(nsite,visits,theta.site)

# Group explicative and response variables in a data-frame

data.obs.df <- data.frame(Y,visits,alt=X.sites[,2])

# Transform observations in a spatial object

data.obs <- SpatialPointsDataFrame(coords=coordinates(sites.sp),

data=data.obs.df)

# Plot observations

plot(alt.orig)

points(data.obs[data.obs$Y==1,],pch=16)

points(data.obs[data.obs$Y==0,],pch=1)
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Figure 2.3: Observation points. Presences (full circles) and absences (empty circles) are
localized on the altitude map (in m).

2.1.3 Parameter inference using the hSDM.binomial() function

The hSDM.binomial() function performs a Binomial logistic regression in a Bayesian
framework. Before using this function we need to prepare a bit the data for predictions.
We want to have predictions on the whole landscape, not only at observation points. To
directly obtain these predictions, we can create a data frame including altitudinal data on
the whole landscape. This data frame will be used for the suitability.pred argument.
The data frame for predictions must include the same column names as those used in the
formula for the suitability argument (i.e. “alt” our example).

data.pred <- data.frame(alt=values(alt))

We can now call the hSDM.binomial() function. Setting parameter save.p to 1, we can
save in memory the MCMC values for predictions. These values can be used to compute
several statistics for each predictions (mean, median, 95% quantiles). For example, mean
and 95% quantiles are useful to estimate the uncertainty around the mean predictions.

mod.hSDM.binomial <- hSDM.binomial(presences=data.obs$Y,

trials=data.obs$visits,

suitability=~alt,
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data=data.obs,

suitability.pred=data.pred,

burnin=1000, mcmc=1000, thin=1,

beta.start=0,

mubeta=0, Vbeta=1.0E6,

seed=1234, verbose=1, save.p=1)

2.1.4 Analysis of the results

The hSDM.binomial() function returns an MCMC (Markov chain Monte Carlo) for each
parameter of the model and also for the model deviance. To obtain parameter estimates,
MCMC values can be summarized through a call to the summary() function from the coda
package. We can check that the values of the target parameters, β0 = −1 and β1 = 1, are
within the 95% confidence interval of the parameter estimates.

summary(mod.hSDM.binomial$mcmc)

##

## Iterations = 1001:2000

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) -1.4127 0.2255 0.007131 0.02234

## beta.alt 0.9844 0.2961 0.009363 0.03277

## Deviance 202.1663 2.2848 0.072252 0.16607

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -1.8432 -1.5566 -1.4128 -1.265 -0.9583

## beta.alt 0.4509 0.7832 0.9692 1.175 1.6814

## Deviance 199.8948 200.4900 201.3279 203.193 207.6644

Parameters estimates can be compared to results obtained with the glm() function.

#== glm results for comparison

mod.glm <- glm(cbind(Y,visits-Y)~alt,family="binomial",data=data.obs)

summary(mod.glm)
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##

## Call:

## glm(formula = cbind(Y, visits - Y) ~ alt, family = "binomial",

## data = data.obs)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1290 -0.7509 -0.6041 -0.1749 2.7277

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.3822 0.1966 -7.032 2.03e-12 ***

## alt 0.9518 0.2764 3.444 0.000573 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 215.71 on 199 degrees of freedom

## Residual deviance: 199.79 on 198 degrees of freedom

## AIC: 203.79

##

## Number of Fisher Scoring iterations: 5

MCMC can also be graphically summarized with a call to the plot.mcmc() function,
also in the coda package. MCMC are plotted with a trace of the sampled output and a
density estimate for each variable in the chain (Fig. 2.4). This plot can be used to visually
check that the chains have converged.

plot(mod.hSDM.binomial$mcmc)

The hSDM.binomial() function also returns two other objects. The first one, theta.latent,
is the predictive posterior mean of the latent variable θ (the probability of presence) for
each observation.

str(mod.hSDM.binomial$theta.latent)

## num [1:200] 0.2191 0.0992 0.1038 0.1878 0.221 ...

summary(mod.hSDM.binomial$theta.latent)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0171 0.1540 0.2179 0.2297 0.2974 0.4970
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Figure 2.4: Trace and density estimate for each variable of the MCMC.
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The second one, theta.pred is the set of sampled values from the predictive posterior
(if parameter save.p is set to 1) or the predictive posterior mean (if save.p is set to 0)
for each prediction. In our example, save.p is set to 1 and theta.pred is an mcmc object.
Values in theta.pred can be used to plot the predicted probability of presence on the
whole landscape and the uncertainty associated to predictions (Fig 2.5).

# Create a raster for predictions

theta.pred.mean <- raster(theta)

# Create rasters for uncertainty

theta.pred.2.5 <- theta.pred.97.5 <- raster(theta)

# Attribute predicted values to raster cells

theta.pred.mean[] <- apply(mod.hSDM.binomial$theta.pred,2,mean)

theta.pred.2.5[] <- apply(mod.hSDM.binomial$theta.pred,2,quantile,0.025)

theta.pred.97.5[] <- apply(mod.hSDM.binomial$theta.pred,2,quantile,0.975)

# Plot the predicted probability of presence and uncertainty

plot(theta.pred.mean,main="Mean",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

plot(theta.pred.2.5,main="Quantile 2.5 %",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

plot(theta.pred.97.5,main="Quantile 97.5 %",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

In our example, we can compare the predictions to the initial probability of presence
computed from our model to check that our predictions are correct (Fig. 2.6).

# Comparing predictions to initial values

plot(theta[],theta.pred.mean[],cex.lab=1.4,xlim=c(0,1),ylim=c(0,1))

points(theta[],theta.pred.2.5[],cex.lab=1.4,col=grey(0.5))

points(theta[],theta.pred.97.5[],cex.lab=1.4,col=grey(0.5))

abline(a=0,b=1,col="red",lwd=2)
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Figure 2.5: Predicted probability of presence and uncertainty of predictions.
Mean probability of presence (top), predictions at 2.5% quantile (bottom left) and 97.5%
quantile (bottom right) can be plotted from the mcmc object plot.p.pred returned by
function hSDM.binomial().
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Figure 2.6: Predicted vs. initial probabilities of presence. Initial probabilities of
presence are computed from the Binomial logistic regression model with target parameters.

2.2 Site-occupancy model

2.2.1 Mathematical formulation

Let’s consider the random variable zi describing habitat suitability at site i. The random
variable zi can take value 1 or 0 depending on the fact that the habitat is suitable (zi = 1)
or not (zi = 0). Habitat at site i is described by environmental variables Xi. Random
variable zi can be assumed to follow a Bernoulli distribution of parameter θi (Eq. 2.3). In
this case, θi is the probability that the habitat is suitable. Several visits at time t1, t2,
etc., can occur at site i. Let’s consider the random variable yit representing the presence
of the species at site i and time t. The species is observed at site i (

∑
t yit ≥ 1) only if

the habitat is suitable (zi = 1). The species is unobserved at site i (
∑

t yit = 0) if the
habitat is not suitable (zi = 0), or if the habitat is suitable (zi = 1) but the probability
δit of detecting the species at site i and time t is inferior to 1. Thus, yit is assumed to
follow a Bernoulli distribution of parameter ziδit. Using a logit link function, δit can be
expressed as a linear model combining explicative variables Wit and parameters γ (Eq. 2.3).
Typically, explicative variables Wit are site characteristics (e.g., habitat variables) or survey
characteristics (e.g., weather conditions). The function hSDM.siteocc() estimates the
parameters β and γ of such a model.
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(2.3)

Ecological process:
zi ∼ Bernoulli(θi)

logit(θi) = Xiβ

Observation process:
yit ∼ Bernoulli(ziδit)

logit(δit) = Witγ

2.2.2 Data generation

To explore the characteristics of the hSDM.siteocc() function, we can generate a new
virtual data-set on the basis of the site-occupancy model described above (Eq. 2.3). In
the most general case, the observation protocol includes severals visits with varying survey
conditions (e.g. weather conditions) to several sites with fixed sites characteristics (e.g.
habitat variables). We will generate a virtual data-set following this protocole using the
altitudinal data in the previous example for the Binomial model (Sec. 2.1).

We draw at random the number of visits at each site of the previous example (see
Fig. 2.3 of Sec. 2.1).

# Number of visits associated to each observation point

set.seed(seed)

visits <- rpois(nsite,lambda=3) # Mean number of visits ~3

# NB: Setting a too low mean number of visits per site (lambda < 3)

# leads to inaccurate parameter estimates

visits[visits==0] <- 1 # Number of visits must be > 0

# Vector of observation sites

sites <- vector()

for (i in 1:nsite) {
sites <- c(sites,rep(i,visits[i]))

}

The survey conditions for each visit are determined by two explicative variables, w1

and the altitude (variable denoted A). These two variables explain the observability of the
species (Eq. 2.4).

(2.4)
yit ∼ Bernoulli(ziδit)

logit(δit) = γ0 + γ1w1it + γ2Ait

We fix the intercept and the effects of these two variables: γ0 = −1, γ1 = 1 and γ2 = −1
for determining the detection probability. In our case, the detection probability decreases
with altitude (γ2 < 0).
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# Explicative variables for observation process

nobs <- sum(visits)

set.seed(seed)

w1 <- rnorm(n=nobs,0,1)

W <- cbind(rep(1,nobs),w1,X.sites[sites,2])

# Target parameters for observation process

gamma.target <- matrix(c(-1,1,-1),ncol=1)

Using covariates and parameters for the two processes, we compute the probability that
the habitat is suitable (θi) and the species detection probability (δi). We also draw the
random variables zi and yi and construct the observation data-set.

# Ecological process (suitability)

logit.theta.site <- X.sites %*% beta.target

theta.site <- inv.logit(logit.theta.site)

set.seed(seed)

Z <- rbinom(nsite,1,theta.site)

# Observation process (detectability)

logit.delta.obs <- W %*% gamma.target

delta.obs <- inv.logit(logit.delta.obs)

set.seed(seed)

Y <- rbinom(nobs,1,delta.obs*Z[sites])

# Data-sets

data.obs <- data.frame(Y,w1,alt=X.sites[sites,2],site=sites)

data.suit <- data.frame(alt=X.sites[,2])

2.2.3 Parameter inference using the hSDM.siteocc() function

The hSDM.siteocc() function estimates the parameter of a site-occupancy model in a
Bayesian framework.

mod.hSDM.siteocc <- hSDM.siteocc(# Observations

presence=data.obs$Y,

observability=~w1+alt,

site=data.obs$site,

data.observability=data.obs,

# Habitat

suitability=~alt,

data.suitability=data.suit,

# Predictions

suitability.pred=data.pred,

27



# Chains

burnin=1000, mcmc=1000, thin=1,

# Starting values

beta.start=0,

gamma.start=0,

# Priors

mubeta=0, Vbeta=1.0E6,

mugamma=0, Vgamma=1.0E6,

# Various

seed=1234, verbose=1, save.p=1)

2.2.4 Analysis of the results

summary(mod.hSDM.siteocc$mcmc)

##

## Iterations = 1001:2000

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) -0.8013 0.3357 0.010617 0.03161

## beta.alt 1.1533 0.4902 0.015501 0.04079

## gamma.(Intercept) -1.2915 0.2261 0.007149 0.02448

## gamma.w1 0.9379 0.2273 0.007188 0.02099

## gamma.alt -0.9588 0.2173 0.006871 0.01604

## Deviance 296.0651 3.2473 0.102688 0.28808

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -1.4767 -1.0039 -0.8107 -0.5990 -0.08896

## beta.alt 0.4223 0.7532 1.0780 1.4936 2.21094

## gamma.(Intercept) -1.7531 -1.4323 -1.2875 -1.1551 -0.77827

## gamma.w1 0.5312 0.7753 0.9254 1.0772 1.46189

## gamma.alt -1.3678 -1.1046 -0.9737 -0.8099 -0.52155

## Deviance 291.8021 293.5787 295.4287 298.0085 303.22179
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Figure 2.7: Trace and density estimate for each variable of the MCMC.

plot(mod.hSDM.siteocc$mcmc)

# Create a raster for predictions

theta.pred.mean <- raster(theta)

# Computing mean and quantiles for uncertainty

theta.pred.mean[] <- apply(mod.hSDM.siteocc$theta.pred,2,mean)

theta.pred.2.5 <- apply(mod.hSDM.siteocc$theta.pred,2,quantile,0.025)

theta.pred.97.5 <- apply(mod.hSDM.siteocc$theta.pred,2,quantile,0.975)

# Plot the predicted probability of presence

plot(theta.pred.mean,main="hSDM.siteocc",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

# Comparing predictions to initial values

plot(theta[],theta.pred.mean[],xlim=c(0,1),ylim=c(0,1),cex.lab=1.4)

points(theta[],theta.pred.2.5[],cex.lab=1.4,col=grey(0.5))

points(theta[],theta.pred.97.5[],cex.lab=1.4,col=grey(0.5))

abline(a=0,b=1,col="red",lwd=2)

Parameters estimates can be compared to results obtained with the glm() function
assuming a perfect detection.
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Figure 2.8: Comparing predicted probability of presence with initial probabili-
ties.
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#== glm results for comparison

mod.glm <- glm(Y~alt,family="binomial",data=data.obs)

summary(mod.glm)

##

## Call:

## glm(formula = Y ~ alt, family = "binomial", data = data.obs)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.5284 -0.4417 -0.4270 -0.4079 2.2650

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.3175 0.1443 -16.056 <2e-16 ***

## alt -0.1330 0.1289 -1.031 0.302

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 362.10 on 594 degrees of freedom

## Residual deviance: 361.08 on 593 degrees of freedom

## AIC: 365.08

##

## Number of Fisher Scoring iterations: 5

# Create a raster for predictions

theta.pred.glm <- raster(theta)

# Attribute predicted values to raster cells

theta.pred.glm[] <- predict.glm(mod.glm,newdata=data.pred,type="response")

# Plot the predicted probability of presence

plot(theta.pred.glm,main="GLM",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

# Comparing predictions to initial values

plot(theta[],theta.pred.glm[],

xlim=c(0,1),ylim=c(0,1),cex.lab=1.4)

points(theta[],theta.pred.mean[],col=grey(0.5))

abline(a=0,b=1,col="red",lwd=2)

On Figure 2.9, we can see that using a GLM in the case of imperfect detection can lead
to very inaccurate parameter estimates and predictions for the probability of presence of
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the species. This is particularly true when detection probability is negatively correlated to
presence probability (through an explicative variable such as the altitude in our example).
This has been clearly demonstrated in an article by Lahoz-Monfort et al. (2014).

32



0 10 20 30 40 50

0
10

20
30

40
50

Initial probabilities

0

0.25

0.5

0.75

1

0 10 20 30 40 50

0
10

20
30

40
50

GLM

0

0.25

0.5

0.75

1

●●●●●●●●●●● ● ●●●●●●●●●●●●●● ●●●● ●● ● ● ●●●●● ● ● ● ●●●●●●●● ●●●●●● ●●●●● ● ●●●●●●●●●● ●●●●●●●● ●●● ● ● ●● ● ●● ● ● ●●●●●●●● ●●●●● ● ●●●●● ● ●●●●●●●●●● ●●●●●●●● ● ●● ● ● ●● ●●● ● ●●●●●●●●● ●●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●●●● ●● ● ● ●●●●● ● ●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ● ● ●●●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●● ●●●●●● ●●●●● ●●●●●●● ● ●●●●●● ●●●● ● ●●●●● ●●●● ●●●●●● ● ●●●●●●●●●●● ● ●●●● ●●● ●●● ● ●●●● ●● ●●● ● ● ●●●●●●●●● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●● ● ● ●●● ●● ● ● ● ● ●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●● ● ● ● ●●● ● ● ● ● ● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●● ● ● ●●●● ● ●● ● ● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●● ● ● ●●● ● ● ● ●● ●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●● ●●●●●●●● ● ● ● ●● ● ● ● ●●●●●●●●● ●●●●●●● ● ●●●● ●●●●● ●●●●●●●● ● ●●●●●●● ● ● ●●● ● ● ● ●●●●●●●●● ●●●●●●● ● ●●●● ●●●●●● ●●●●●●● ●●●●●●●●● ● ●●● ● ● ●●●●●●●●●● ●●●●●● ●●●●●● ● ●●●●●●●●●●●● ● ●●●●●●●● ● ● ● ● ● ●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ● ● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●●●● ●●●●● ●●● ●●●●● ● ●●●●●● ● ● ●●● ● ●●●●●● ● ●●●● ●●●●●● ●●●●●●●●●●●● ●●● ● ●●●●● ●●●●●● ● ● ●● ● ●●●●●●● ● ●●●● ●●●●●● ●●●●●● ●●●●●● ●●●● ●●●●● ● ●●●●●● ● ● ● ● ● ●●●● ●● ● ●●●● ●●●●●● ●●●●●●●●●●●● ● ●●● ●●●●●● ●●● ●●● ● ●●● ●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ● ● ●●●●●●●● ● ●●●●● ●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●● ● ●●●●
●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●

● ● ●●●●●● ●●● ● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●

● ●●●●●●● ●●●●● ●●● ●●●● ●●●●●● ●●●●● ● ● ● ● ● ●●●● ●●●●●●●●●●
● ●●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●● ● ● ● ● ●●●●● ●●●●●●●●●●

● ●●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●● ● ● ● ●●● ●● ●●●●●●●●●●

●●●●●●● ● ●●●●●●●● ●●●●●●●●●●● ●●●●● ● ● ● ●●● ●●●●●●●●●●●●

●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●

●●●●●●● ●● ●●●●●●● ● ●●●●●●●●●●● ●●●● ● ● ●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●● ● ●●●●●●●● ●●● ●●●● ●

● ●●●●●●●●●●●●●●●●
●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●● ●

●●●●●● ●●●● ●●● ●● ● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●
●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●● ●●●● ●
●●●●●●●●●● ● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●

●●●●●●●●●●● ● ●●●● ●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●● ● ●●●● ● ●●●●●●●●●

●●●●●●●●● ● ● ●●●●● ● ● ● ●●●● ●●●●● ●●●●●●● ● ●●●●● ●●●● ●●●●●
●●●●●●●● ● ● ● ●●●●●● ● ●●●●● ●●●●● ● ●●●●●●● ● ●●●● ●●● ●●●●●●

●●●●●●●●● ● ● ●●●●●●● ●●●● ●●●●●● ●●●●●●●●● ●●●● ●● ●● ●●●●
●●●●●● ●●●●● ●

● ● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ● ●●●●●●
●●●●●●● ● ● ●●● ● ● ● ●● ●● ● ●●●●●●●●●● ●●●●●●● ●●●●●● ● ●●●●●●●●●●●

● ● ● ● ●●● ●●●● ● ●● ● ●●●●●● ●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●● ● ●
● ● ● ● ●●●●● ●●● ● ●●●●●● ●●● ● ●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●

● ●● ● ●●●●●●● ● ● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●
●●●●●●● ● ● ●● ● ●●● ●●●●●● ●● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●●

●●●●●●●
●● ● ●● ● ●●●●●●●●● ●●●●●●

●●●● ● ●●●●●●● ●●●●●●●●
●●●●●● ●●●●●● ● ● ● ● ●● ●●●●●● ●●●●●●

●●●● ● ●●●●●●●●●● ●●●●●
●●●●●● ● ●●●●●● ● ● ● ●● ●●●●●●●● ●●●●

●●●● ● ●●●●●●●●●●●●●●●
●●●●●● ● ●●● ● ●●●● ●●● ● ● ●●●●●●●●●●●●● ● ●●●●●●●●●●●● ● ●●●

●●●●●● ● ● ●●● ● ●●●●●●●● ●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta[]

th
et

a.
pr

ed
.g

lm
[]

●●
●

●●●
●●

●

●●

●

●
●

●
●

●●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●

●●●
●

●

●
●

●
●●●

●●

●
●●

●
●

●
●●●●●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●●

●

●
●●

●
●

●●

●
●

●
●

●
●

●

●
●

●

●

●
●●●

●●●
●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●●●

●
●

●
●

●

●

●

●●

●
●●

●

●
●

●

●
●

●
●●●

●●●●
●●●●●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●●●●●

●
●

●
●

●

●

●
●

●
●●

●

●
●●

●
●

●
●

●●
●

●●●
●●

●
●●●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●●●
●●●

●
●

●

●

●
●

●●●●

●
●

●

●●

●●
●●

●

●
●●

●●
●

●
●

●
●

●

●
●

●

●

●

●●●
●

●

●

●●
●●

●

●●
●

●
●

●
●

●●
●●●

●

●
●

●
●●

●
●●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●
●

●

●●

●
●

●●
●

●
●

●●
●

●

●
●

●
●●

●
●●

●
●

●●
●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●
●

●
●●●

●
●

●
●●

●
●

●
●

●●●
●

●●
●●

●

●●
●●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●
●●●
●

●●

●
●

●
●●●●
●

●

●●
●

●●●
●●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●●●●

●●●●●●
●●

●●●
●

●
●●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●●●●
●

●
●●●●

●
●

●

●
●●

●●

●●
●

●
●

●●●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●●●

●

●
●●●

●

●
●●

●

●●

●

●
●

●
●

●
●

●
●●

●
●●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●●●
●

●

●
●

●
●

●●●●

●
●

●
●●

●

●

●
●

●
●

●●
●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●●●

●

●

●
●

●
●●●

●●

●
●●●

●
●

●
●●

●

●●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●●

●●

●

●

●
●

●●
●

●
●
●

●
●

●●

●●●
●

●

●
●

●
●●

●
●●

●
●

●

●●

●

●

●

●

●

●

●

●●●
●

●●

●●
●

●
●

●

●

●●

●●●
●●●

●
●

●
●

●●●

●●

●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●●●
●

●
●

●
●

●●

●
●●

●●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●●●

●
●

●●●●
●

●

●
●●●

●
●

●

●

●●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●●●●
●●

●●●●●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●●
●●

●

●
●

●
●●●●●
●

●
●●

●
●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●●
●

●

●

●
●

●●

●

●

●

●●
●

●
●

●
●●●●●●
●

●●

●●
●

●

●

●

●●●

●●●

●

●

●●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●
●

●
●
●●●

●●
●●

●

●
●

●●
●

●

●●
●

●
●●

●

●
●

●

●

●●●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●
●●

●●
●

●●
●●

●
●

●

●●
●●●

●
●

●

●

●
●

●

●●

●

●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●●●
●

●
●●

●
●
●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●●●

●

●●
●

●●●●

●●●
●●

●●
●

●●

●

●
●●●●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●●

●
●

●●
●

●●●
●

●
●

●
●●

●
●

●
●

●

●

●●●
●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●
●●

●
●

●
●

●
●●●●

●

●
●

●

●●●
●●●●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●●

●●●●

●●

●

●●
●●●

●
●

●●

●
●

●●
●

●
●

●●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●●●●
●

●●
●●

●
●

●

●●

●●
●●

●●

●

●

●●●●
●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●
●

●
●●●●●
●

●
●●●

●
●

●
●●

●
●

●●●
●

●

●

●
●●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●●

●
●●●●●
●

●

●●●●●
●

●
●

●
●

●●
●

●

●●

●●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●●
●

●
●●●

●●●●●●●●
●

●

●●●●●
●

●
●●

●

●
●●

●

●
●

●
●

●●

●●
●●

●

●

●

●
●

●

●

●
●

●
●

●●●●●●●●●●
●●●

●

●

●●●
●

●
●

●

●●

●

●●

●
●

●

●●

●●
●●

●●●
●

●
●

●●

●

●

●●●●●●●●●●●●
●

●
●●●●

●

●●●●
●●●●

●

●

●

●
●

●

●
●●

●

●●●
●●

●●
●

●

●

●●●
●●●●●●
●●●●●●

●
●

●

●
●

●●

●●●●
●

●●
●

●

●
●

●

●

●

●●

●●

●●●
●
●

●

●
●

●

●

●●●●●●●
●
●

●●●●●●
●

●

●

●●

●
●

●●●●
●

●
●●

●

●

●
●

●
●

●

●

●
●

●
●●●

●●

●
●

●

●

●●●●●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●●●

●
●

●
●

●

●●

●

●
●

●●
●

●
●●

●

●

●

●
●

●●●●
●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●●●
●

●
●

●

●

●

●

●

●

●
●●

●●
●●

●

●

●●●●●
●●●

●

●

●

●●
●●

●
●●

●

●

●

●

●●
●●

●●

●
●

●●
●

●
●

●●

●●

●

●

●
●

●
●

●

●

●

●

●
●●●●●

●
●●●●

●

●

●

●●●
●

●●

●

●
●

●

●
●

●

●●

●
●
●●●

●
●

●

●
●

●
●

●

●

●
●●
●

●

●

●

●
●●●
●
●

●
●

●●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●●

●●

●
●●

●●●
●

●

●

●

●●
●

●

●●●
●

●

●

●
●●●●

●
●

●

●

●●
●

●

●●
●

●
●●

●

●
●

●●
●

●
●●

●
●

●
●●

●●●●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●●●
●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●
●

●
●

●

●
●●

●
●

●●●
●

●●●

●

●

●

●
●

●
●●

●
●

●

●●●●●●
●

●

●

●

●
●

●

●●●

●
●

●●

●

●

●
●●

●

●

●●●
●

●
●

●●
●

●●
●

●●
●

●●
●

●

●●
●

●
●●●●●
●

●

●

●●

●

●
●

●

●
●

●●
●●

●
●

●
●●

●
●

●
●●

●

●

●●●
●

●●
●●

●
●●

●●

●

●
●●

●●●●
●●

●

●●

●

●●

●

●
●●●●●●●
●

●
●●●

●●

●●
●

●

●

●
●●

●●●●
●

●●
●

●●
●

●

●
●

●●●●
●

●
●●●
●

●

●

●

●

●

●
●

●
●●●

●

●
●●
●

●
●

●●
●

●

●

●
●●●●
●●

●

●
●

●
●●

●
●

●
●●●
●

●

●

●
●

●
●●
●

●

●

●

●
●

●●
●●
●
●●●

●●
●

●

●●●
●

●

●●
●

●●
●

●●

●

●●
●●

●
●

●
●●●
●●

●

●●
●

●

●●
●

●

●
●●

●

●
●

●●●
●●

●
●●

●

●

●●
●

●
●
●

●●●
●
●●●

●

●

●
●

●

●

●●●●
●

●
●

●

●
●

●

●

●●

●
●●●●
●

●
●●●●

●
●
●●●

Figure 2.9: Comparing predicted probability of presence using GLM with ini-
tial probabilities. Grey dots figure the predictions with the hSDM.siteocc() function
whereas black dots figure the prediction using the glm() function.
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2.3 Binomial iCAR model

2.3.1 Mathematical formulation

2.3.2 Data generation with iCAR

# Rasters must be projected to correctly compute the neighborhood

crs(alt) <- '+proj=utm +zone=1'

# Neighborhood matrix

neighbors.mat <- adjacent(alt, cells=c(1:ncells), directions=8,

pairs=TRUE, sorted=TRUE)

# Number of neighbors by cell

n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2]

# Adjacent cells

adj <- neighbors.mat[,2]

# Generate symmetric adjacency matrix, A

A <- matrix(0,ncells,ncells)

index.start <- 1

for (i in 1:ncells) {
index.end <- index.start+n.neighbors[i]-1

A[i,adj[c(index.start:index.end)]] <- 1

index.start <- index.end+1

}

# Function to draw in a multivariate normal

rmvn <- function(n, mu=0, V=matrix(1), seed=1234) {
p <- length(mu)

if (any(is.na(match(dim(V), p)))) {
stop("Dimension problem!")

}
D <- chol(V)

set.seed(seed)

t(matrix(rnorm(n*p),ncol=p)%*%D+rep(mu,rep(n,p)))

}

# Generate spatial random effects

Vrho.target <- 5 # Variance of spatial random effects

d <- 1 # Spatial dependence parameter = 1 for intrinsic CAR

Q <- diag(n.neighbors)-d*A + diag(.0001,ncells) # Add small constant to

# make Q non-singular

covrho <- Vrho.target*solve(Q) # Covariance of rhos

rho <- c(rmvn(1,mu=rep(0,ncells),V=covrho,seed=seed)) # Spatial Random Effects

rho <- rho-mean(rho) # Centering rhos on zero
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rho.rast <- rasterFromXYZ(xyz=cbind(coords,rho))

# Probability of presence

theta.cells <- inv.logit(X %*% beta.target + rho)

theta <- rasterFromXYZ(cbind(coords,theta.cells))

# Ecological process (suitability)

cells <- extract(alt,sites.sp,cell=TRUE)[,1]

logit.theta.site <- X.sites %*% beta.target + rho[cells]

theta.site <- inv.logit(logit.theta.site)

set.seed(seed)

Y <- rbinom(nsite,visits,theta.site)

# Data-sets

data.suit <- data.frame(Y,visits,alt=X.sites[,2],cells)

data.pred <- data.frame(alt=values(alt),cell=c(1:ncells))

# Transform observations into a spatial object

data.suit <- SpatialPointsDataFrame(coords=coordinates(sites.sp),

data=data.suit)

# Plot spatial random effects

plot(rho.rast,main="Spatial random effects")

# Plot initial probabilities and observations

plot(theta,main="Initial probabilities (iCAR model)",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

points(data.suit[data.suit$Y>0,],pch=16)

points(data.suit[data.suit$Y==0,],pch=1)

2.3.3 Parameter inference using the hSDM.binomial.iCAR() func-
tion

Start <- Sys.time() # Start the clock

mod.hSDM.binomial.iCAR <- hSDM.binomial.iCAR(presences=data.suit$Y,

trials=data.suit$visits,

suitability=~alt,

spatial.entity=data.suit$cells,

data=data.suit,

n.neighbors=n.neighbors,

neighbors=adj,

suitability.pred=data.pred,

spatial.entity.pred=data.pred$cell,

burnin=5000, mcmc=5000, thin=5,
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Figure 2.10: Spatial random effects.
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Figure 2.11: Initial probability of presence and observations. Presences (full circles)
and absences (empty circles).
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beta.start=0,

Vrho.start=1,

priorVrho="1/Gamma",

mubeta=0, Vbeta=1.0E6,

shape=1, rate=1,

Vrho.max=10,

seed=1234, verbose=1,

save.rho=1, save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference

2.3.4 Analysis of the results with iCAR

summary(mod.hSDM.binomial.iCAR$mcmc)

##

## Iterations = 5001:9996

## Thinning interval = 5

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) -0.9929 0.1420 0.004490 0.009587

## beta.alt 0.7497 0.1943 0.006144 0.022300

## Vrho 2.8003 0.9797 0.030981 0.315369

## Deviance 327.8354 15.1139 0.477945 2.768131

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -1.2754 -1.095 -1.0008 -0.8909 -0.7202

## beta.alt 0.4132 0.609 0.7363 0.8768 1.1585

## Vrho 1.3606 2.031 2.6470 3.4203 5.0378

## Deviance 297.8710 317.162 327.3254 338.7201 356.8067

# Predictions for spatial random effects

rho.pred <- apply(mod.hSDM.binomial.iCAR$rho.pred,2,mean)

rho.pred.rast <- rasterFromXYZ(cbind(coords,rho.pred))

plot(rho.pred.rast,main="Predictions rho")

# Predictions for probability of presence
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theta.pred <- mod.hSDM.binomial.iCAR$theta.pred

theta.pred.rast <- rasterFromXYZ(cbind(coords,theta.pred))

plot(theta.pred.rast,main="Predictions theta",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

# Predictions vs. initial spatial random effects

plot(rho[-cells],rho.pred[-cells],xlab="rho target",ylab="Predictions rho")

points(rho[cells],rho.pred[cells],col="blue",pch=16)

abline(a=0,b=1,col="red")

# Predictions vs. initial probabilities

plot(values(theta)[-cells],theta.pred[-cells],xlab="theta target",

ylab="Predictions theta")

points(values(theta)[cells],theta.pred[cells],col="blue",pch=16)

abline(a=0,b=1,col="red")
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Figure 2.12: Predictions vs. initial values
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2.3.5 Comparison with OpenBUGS results

# BUGS model

modelBUGS1.txt <-

"model {

# likelihood

for (n in 1:nobs) {
y[n] ~ dbin(theta[n], visits[n])

logit(theta[n]) <- Xbeta[n] + rho[IdCell[n]]

Xbeta[n] <- beta[1] + beta[2]*x1[n]

}

# CAR prior distribution for spatial random effects:

rho[1:ncells] ~ car.normal(adj[], weights[], num[], tau)

for (k in 1:sumNumNeigh) {
weights[k] <- 1 # set equal weights for all neighbors

}

# Other priors

for (i in 1:2) {
beta[i] ~ dnorm(0,1.0E-6)

}
Vrho <- 1/tau

tau ~ dgamma(1,1)

}"

# Create model.txt file in the working directory

system(paste("echo \"",modelBUGS1.txt,"\" > modelBUGS1.txt",sep=""))

# Data for OpenBUGS

y <- data.suit$Y

visits <- data.suit$visits

IdCell <- data.suit$cells

x1 <- data.suit$alt

num <- n.neighbors

adj <- adj

nobs <- length(y)

ncells <- length(n.neighbors)

sumNumNeigh <- length(adj)

data <- list("y","visits","IdCell","x1","num",

"adj","nobs","ncells","sumNumNeigh")

# Inits
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Value OpenBUGS hSDM
β0 -0.99 -0.99
βalt 0.73 0.75
Vρ 2.72 2.80
Deviance 328.62 327.84
Time (secs) 91 7

Table 2.1: Comparison between hSDM and OpenBUGS outputs.

inits <- list(list(beta=rep(0,2),rho=rep(0,ncells),tau=1))

# OpenBUGS call

library(R2OpenBUGS)

Start <- Sys.time() # Start the clock

Open <- bugs(data,inits,

model.file="modelBUGS1.txt",

parameters=c("beta","Vrho","rho"),

n.chains=1,

OpenBUGS.pgm="/usr/bin/OpenBUGS",

n.iter=2000,

n.burnin=1000,

n.thin=5,

DIC=TRUE,

debug=FALSE,

clearWD=FALSE)

Time.OpenBUGS <- difftime(Sys.time(),Start,units="sec") # Time difference

# Time difference

ratio.time <- as.numeric(Time.OpenBUGS)/as.numeric(Time.hSDM)

ratio.time # For this example, hSDM is X times faster

#== Outputs

Open$DIC

Open$pD

beta.pred.Open <- apply(Open$sims.list$beta,2,mean)

Vrho.pred.Open <- mean(Open$sims.list$Vrho)

deviance.Open <- mean(Open$sims.list$deviance)

rho.OpenBUGS <- apply(Open$sims.list$rho,2,mean)

plot(rho.pred,rho.OpenBUGS)

abline(a=0,b=1,col="red")
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Figure 2.13: Comparison between hSDM and OpenBUGS for spatial random
effect estimates.

2.3.6 Comparison with GLM results

#== glm results for comparison

mod.glm <- glm(cbind(Y,visits)~alt,family="binomial",data=data.suit)

summary(mod.glm)

##

## Call:

## glm(formula = cbind(Y, visits) ~ alt, family = "binomial", data = data.suit)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.3707 -0.9457 -0.6015 0.4535 1.8110

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -1.20339 0.08846 -13.604 < 2e-16 ***

## alt 0.44159 0.10239 4.313 1.61e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 157.26 on 199 degrees of freedom
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## Residual deviance: 135.34 on 198 degrees of freedom

## AIC: 355.04

##

## Number of Fisher Scoring iterations: 4

# Create a raster for predictions

theta.pred.glm <- raster(theta)

# Attribute predicted values to raster cells

theta.pred.glm[] <- predict.glm(mod.glm,newdata=data.pred,type="response")

# Plot the predicted probability of presence

plot(theta.pred.glm,main="GLM for iCAR",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

# Comparing predictions to initial values

plot(theta[],theta.pred.glm[],

xlim=c(0,1),ylim=c(0,1),cex.lab=1.4)

abline(a=0,b=1,col="red",lwd=2)
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Figure 2.14: Comparing predicted probability of presence using GLM with initial
probabilities for a binomial model with iCAR process.
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2.4 Site-occupancy iCAR model

2.4.1 Mathematical formulation

2.4.2 Data generation

# Ecological process (suitability)

logit.theta.site <- X.sites %*% beta.target + rho[cells]

theta.site <- inv.logit(logit.theta.site)

set.seed(seed)

Z <- rbinom(nsite,1,theta.site)

# Observation process (detectability)

nobs <- sum(visits)

set.seed(seed)

Y <- rbinom(nobs,1,delta.obs*Z[sites])

# Data-sets

data.obs <- data.frame(Y,w1,alt=X.sites[sites,2],site=sites)

data.suit <- data.frame(alt=X.sites[,2],cell=cells)

2.4.3 Parameter inference using the hSDM.siteocc.iCAR() func-
tion

Start <- Sys.time() # Start the clock

mod.hSDM.siteocc.iCAR <- hSDM.siteocc.iCAR(# Observations

presence=data.obs$Y,

observability=~w1+alt,

site=data.obs$site, data.observability=data.obs,

# Habitat

suitability=~alt, data.suitability=data.suit,

# Spatial structure

spatial.entity=data.suit$cell,

n.neighbors=n.neighbors, neighbors=adj,

# Predictions

suitability.pred=data.pred,

spatial.entity.pred=data.pred$cell,

# Chains

burnin=5000, mcmc=5000, thin=5,

# Starting values

beta.start=0,

gamma.start=0,
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Vrho.start=1,

# Priors

mubeta=0, Vbeta=1.0E6,

mugamma=0, Vgamma=1.0E6,

# priorVrho="1/Gamma",

# shape=1, rate=1,

priorVrho="Uniform",

Vrho.max=10,

# Various

seed=1234, verbose=1,

save.rho=1, save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference

summary(mod.hSDM.siteocc.iCAR$mcmc)

##

## Iterations = 5001:9996

## Thinning interval = 5

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) -1.3887 0.4224 0.013357 0.03063

## beta.alt 1.0793 0.4787 0.015138 0.05328

## gamma.(Intercept) -1.1084 0.2568 0.008121 0.01169

## gamma.w1 1.1206 0.2587 0.008180 0.01065

## gamma.alt -0.5615 0.2236 0.007071 0.00881

## Vrho 6.8428 2.0419 0.064569 0.57398

## Deviance 253.1036 10.1066 0.319600 1.01861

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -2.2137 -1.6727 -1.3879 -1.1172 -0.5645

## beta.alt 0.1648 0.7386 1.0730 1.3929 2.1004

## gamma.(Intercept) -1.6208 -1.2980 -1.1016 -0.9277 -0.6422

## gamma.w1 0.6383 0.9490 1.1230 1.2783 1.6412

## gamma.alt -0.9982 -0.7134 -0.5594 -0.4180 -0.1070

## Vrho 3.2623 5.1637 7.0166 8.6736 9.8196

## Deviance 233.3963 246.3764 252.9402 260.1291 274.6428
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# Predictions for spatial random effects

rho.pred <- apply(mod.hSDM.siteocc.iCAR$rho.pred,2,mean)

rho.pred.rast <- rasterFromXYZ(cbind(coords,rho.pred))

plot(rho.pred.rast,main="Predictions rho")

# Predictions for probability of presence

theta.pred <- mod.hSDM.siteocc.iCAR$theta.pred

theta.pred.rast <- rasterFromXYZ(cbind(coords,theta.pred))

plot(theta.pred.rast,main="Predictions theta",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

# Predictions vs. initial spatial random effects

plot(rho[-cells],rho.pred[-cells],xlab="rho target",ylab="Predictions rho")

points(rho[cells],rho.pred[cells],col="blue",pch=16)

abline(a=0,b=1,col="red")

# Predictions vs. initial probabilities

plot(values(theta)[-cells],theta.pred[-cells],xlab="theta target",

ylab="Predictions theta")

points(values(theta)[cells],theta.pred[cells],col="blue",pch=16)

abline(a=0,b=1,col="red")

2.4.4 Comparison with OpenBUGS results

# BUGS model

modelBUGS.txt <-

"model {

# Suitability process

for (i in 1:nsite) {
z[i] ~ dbern(theta[i])

logit(theta[i]) <- Xbeta[i] + rho[IdCellforSite[i]]

Xbeta[i] <- beta[1] + beta[2]*alt.suit[i]

}

# Observability process

for (n in 1:nobs) {
y[n] ~ dbern(delta.prim[n])

delta.prim[n] <- delta[n]*z[IdSiteforObs[n]]

logit(delta[n]) <- gamma[1] + gamma[2]*w1[n] + gamma[3]*alt.obs[n]

}

# CAR prior distribution for spatial random effects:

rho[1:ncells] ~ car.normal(adj[], weights[], num[], tau)

for (k in 1:sumNumNeigh) {
weights[k] <- 1 # set equal weights for all neighbors
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Figure 2.15: Predictions vs. initial values
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}

# Other priors

for (i in 1:2) {
beta[i] ~ dnorm(0,1.0E-6)

}
for (i in 1:3) {
gamma[i] ~ dnorm(0,1.0E-6)

}
Vrho ~ dunif(0,10)

tau <- 1/Vrho

}"

# Create model.txt file in the working directory

system(paste("echo \"",modelBUGS.txt,"\" > modelBUGS.txt",sep=""))

# Data for OpenBUGS

y <- data.obs$Y

IdCellforSite <- data.suit$cell

IdSiteforObs <- data.obs$site

alt.suit <- data.suit$alt

w1 <- data.obs$w1

alt.obs <- data.obs$alt

num <- n.neighbors

adj <- adj

nobs <- length(y)

nsite <- length(IdCellforSite)

ncells <- length(n.neighbors)

sumNumNeigh <- length(adj)

data <- list("y","IdCellforSite","IdSiteforObs","alt.suit","w1","alt.obs","num",

"adj","nobs","nsite","ncells","sumNumNeigh")

# Inits

inits <- list(list(beta=rep(0,2),gamma=rep(0,3),rho=rep(0,ncells),Vrho=1))

# OpenBUGS call

library(R2OpenBUGS)

Start <- Sys.time() # Start the clock

Open <- bugs(data,inits,

model.file="modelBUGS.txt",

parameters=c("beta","gamma","Vrho","rho"),

n.chains=1,

OpenBUGS.pgm="/usr/bin/OpenBUGS",

n.iter=2000,
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Value OpenBUGS hSDM
β0 -1.49 -1.39
βalt 1.11 1.08
γ0 -1.06 -1.11
γw1 1.13 1.12
γalt -0.55 -0.56
Vρ 6.38 6.84
Time (secs) 59 14

Table 2.2: Comparison between hSDM and OpenBUGS outputs.

n.burnin=1000,

n.thin=5,

DIC=TRUE,

debug=FALSE,

clearWD=FALSE)

Time.OpenBUGS <- difftime(Sys.time(),Start,units="sec") # Time difference

# Time difference

ratio.time <- as.numeric(Time.OpenBUGS)/as.numeric(Time.hSDM)

ratio.time # For this example, hSDM is X times faster

#== Outputs

Open$DIC

Open$pD

beta.pred.Open <- apply(Open$sims.list$beta,2,mean)

gamma.pred.Open <- apply(Open$sims.list$gamma,2,mean)

Vrho.pred.Open <- mean(Open$sims.list$Vrho)

deviance.Open <- mean(Open$sims.list$deviance)

rho.OpenBUGS <- apply(Open$sims.list$rho,2,mean)

plot(rho.pred,rho.OpenBUGS)

abline(a=0,b=1,col="red")
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Figure 2.16: Comparison between hSDM and OpenBUGS for spatial random
effect estimates.

2.4.5 Comparison with GLM results

#== glm results for comparison

mod.glm <- glm(y~alt,family="binomial",data=data.obs)

summary(mod.glm)

##

## Call:

## glm(formula = y ~ alt, family = "binomial", data = data.obs)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.4152 -0.4147 -0.4145 -0.4144 2.2352

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.410839 0.149237 -16.154 <2e-16 ***

## alt -0.001029 0.144026 -0.007 0.994

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 338.53 on 594 degrees of freedom
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## Residual deviance: 338.53 on 593 degrees of freedom

## AIC: 342.53

##

## Number of Fisher Scoring iterations: 5

# Create a raster for predictions

theta.pred.glm <- raster(theta)

# Attribute predicted values to raster cells

theta.pred.glm[] <- predict.glm(mod.glm,newdata=data.pred,type="response")

# Plot the predicted probability of presence

plot(theta.pred.glm,main="GLM for siteocc iCAR",col=colRP(nb),breaks=brks,

axis.args=arg,zlim=c(0,1))

# Comparing predictions to initial values

plot(theta[],theta.pred.glm[],

xlim=c(0,1),ylim=c(0,1),cex.lab=1.4)

abline(a=0,b=1,col="red",lwd=2)
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Figure 2.17: Comparing predicted probability of presence using GLM with initial
probabilities for a site-occupancy model with iCAR process.
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CHAPTER 3

Abundance data

55



56



CHAPTER 4

Additional examples with real data

4.1 Binomial iCAR model with tens of thousands spa-

tial cells

This example illustrates the use of the hSDM.binomial.iCAR() function on a large region
(tens of thousands grid cells). The data-set includes presence-absence observations for
Protea punctata Meisn. (Fig. 4.1) in the Cap Floristic Region. The data-set also includes
environmental variables for 36909 one minute by one minute grid cells on the whole South
Africa’s Cap Floristic Region (Fig. 4.2).

# Libraries

require(sp)

require(raster)

library(hSDM)

# Load data

data(cfr.env, package="hSDM")

dim(cfr.env) # 36909 cells

data(punc10, package="hSDM")

dim(punc10) # 2934 observations

# Standardize predictors

for (i in 3:8) {
m <- cfr.env[,i]-mean(cfr.env[,i], na.rm=T)

cfr.env[,i] <- m/sd(cfr.env[,i], na.rm=T)

}
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Figure 4.1: Photography of Protea punctata Meisn.

# Make both data sets spatial objects

cfr.env <- SpatialPixelsDataFrame(points=cfr.env[c("lon","lat")],

tol=0.175039702866343,

data=cfr.env[,-c(1,2)])

fullgrid(cfr.env) <- TRUE

coordinates(punc10) <- c(2,3)

# Plot the whole data set

spplot(cfr.env,sp.layout=list('sp.points',

punc10[punc10$Occurrence==1,],

col='black',pch='o'),

col.regions=rainbow(100,start=0.67,end=0))

# Get the indices of cells where presences and absences have been observed.

cfr.env.rast <- stack(cfr.env)

pres <- extract(cfr.env.rast, SpatialPoints(punc10[punc10$Occurrence==1,]),

cellnumbers=TRUE)[,1]

abs <- extract(cfr.env.rast, SpatialPoints(punc10[punc10$Occurrence==0,]),

cellnumbers=TRUE)[,1]

# Make the data frame used in regressions

ncelltot <- length(cfr.env) # Including NULL cells

d <- data.frame(lon=coordinates(cfr.env)[,1],lat=coordinates(cfr.env)[,2],

Y=rep(0,ncelltot),

trials=rep(0,ncelltot),

cell.orig=1:ncelltot,

cfr.env@data)
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Figure 4.2: Values of environmental variables in the Cap Floristic Region. Points
of presence of Protea punctata are represented by a circle.
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d$Y[pres] <- 1

d$trials[c(pres,abs)] <- 1

# Remove NAs

to.remove <- which(!complete.cases(d))

d <- d[-to.remove,]

summary(d)

# Make d a spatial object for later use

coordinates(d) <- c(1,2)

# Find cells' neighborhood with function 'adjacent' from the 'raster' package

plot(cfr.env.rast)

sel.cell <- d$cell.orig

neighbors.mat <- adjacent(cfr.env.rast, cells=sel.cell, directions=8,

pairs=TRUE, target=sel.cell, sorted=TRUE)

n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2]

neighbors.orig <- neighbors.mat[,2]

# Sorting cells from 1 to dim(d)[1] (dim(d)[1]=36907)

s.cell <- sort(unique(d$cell.orig))

d$cell <- match(d$cell.orig,s.cell)

s.neighbors <- sort(unique(neighbors.orig))

neighbors <- match(neighbors.orig,s.neighbors)

# glm, just to compare

mod.glm <- glm(cbind(Y,trials-Y)~min07+smdwin,data=d, family="binomial")

summary(mod.glm)

# hSDM

mod.hSDM.binomial.iCAR <- hSDM.binomial.iCAR(presences=d$Y[d$trials>0],

trials=d$trials[d$trials>0],

suitability=~min07+smdwin,

spatial.entity=d$cell[d$trials>0],

data=d[d$trials>0,],

n.neighbors=n.neighbors,

neighbors=neighbors,

suitability.pred=d,

spatial.entity.pred=d$cell,

burnin=1000,

mcmc=1000, thin=1,

beta.start=c(0,0,0),

Vrho.start=10,

priorVrho="1/Gamma",
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mubeta=0, Vbeta=1.0E6,

shape=2, rate=1,

Vrho.max=10,

seed=1234, verbose=1, save.rho=0)

# Outputs

summary(mod.hSDM.binomial.iCAR$mcmc)

##

## Iterations = 1001:2000

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) -6.7924 0.2721 0.008605 0.05725

## beta.min07 -2.7341 0.1630 0.005153 0.03472

## beta.smdwin 0.7583 0.1404 0.004439 0.02668

## Vrho 6.7782 1.0610 0.033552 0.67466

## Deviance 489.1038 20.4751 0.647480 4.02088

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -7.4383 -6.969 -6.7523 -6.6060 -6.363

## beta.min07 -3.0927 -2.840 -2.7185 -2.6345 -2.420

## beta.smdwin 0.4662 0.674 0.7581 0.8437 1.007

## Vrho 5.3646 5.934 6.5480 7.6397 8.843

## Deviance 451.8252 474.131 488.0859 502.8298 533.916

# Put output together

out <- data.frame(d,pred=mod.hSDM.binomial.iCAR$theta.pred,

sp.ef=mod.hSDM.binomial.iCAR$rho.pred)

# Plot results

coordinates(out) <- coordinates(d)

out <- SpatialPixelsDataFrame(out,tol=0.175039702866343,data=data.frame(out))

fullgrid(out) <- TRUE

p1 <- spplot(out['pred'],col.regions=rainbow(100,start=0.67,end=0),

sp.layout=list('sp.points',punc10[punc10$Occurrence==1,],

col='black',pch='o'))
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Figure 4.3: Predicted probability of presence (top) and estimated spatial random
effects (bottom). Points of presence of Protea punctata are represented by a circle.

p2 <- spplot(out['sp.ef'],col.regions=rainbow(100,start=0.67,end=0))

print(p1,position=c(0,0.5,1,1),more=T)

print(p2,position=c(0,0,1,0.5))

Using function hSDM.binomial.iCAR(), we were able to estimate the spatial random
effect of 36907 cells (Fig. 4.3) and we demonstrated that the use of this function is not
limited (through memory problem or a much too long computation time) by the number
of spatial grid cells. Nevertheless, in this particular example, it is very difficult to reach
convergence for the variance of the spatial random effects (see MCMC outputs above).
This is likely due to the low information content of binary maps and the relatively low
number of observations (2934). As previously underlined by Dormann et al. (2007), we
argue that binomial intrinsic CAR models require further study and caution in their use.
The hSDM R package offers tools to help ecologist explore the behavior and performance
of such models.
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Figure 4.4: Photography of Protea cynaroides (L.) L..

4.2 Binomial iCAR model with data from Latimer

et al. (2006)

In the Appendix B of their scientific article, Latimer et al. (2006) provide some code to
fit what they called “Model 2”, a Binomial iCAR model using presence/absence data for
species Protea cynaroides (L.) L., a common Protea and the national flower of South Africa
(Fig. 4.4).

For the purpose of their example, Latimer et al. (2006) provide data for a small region
including 476 one minute by one minute grid cells. This region is is a small corner of South
Africa’s Cape Floristic Region, and includes very high plant species diversity and a World
Biosphere Reserve. Contrary to the previous example, the data-set includes several visits
at the same site.

# Library

library(hSDM)

# Load data

data(datacells.Latimer2006,package="hSDM")

datacells.Latimer2006$cell <- c(1:dim(datacells.Latimer2006)[1])

data(neighbors.Latimer2006,package="hSDM")

# Format data

p <- datacells.Latimer2006$y[datacells.Latimer2006$n>0]

t <- datacells.Latimer2006$n[datacells.Latimer2006$n>0]

s <- datacells.Latimer2006$cell[datacells.Latimer2006$n>0]

data.obs <- datacells.Latimer2006[datacells.Latimer2006$n>0,]
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# Model

Start <- Sys.time() # Start the clock

mod.hSDM.Lat2006.iCAR <- hSDM.binomial.iCAR(presences=p,

trials=t,

suitability=~rough+julmint+pptcv+smdsum+evi+ph1,

spatial.entity=s,

data=data.obs,

n.neighbors=datacells.Latimer2006$num,

neighbors=neighbors.Latimer2006,

suitability.pred=datacells.Latimer2006,

spatial.entity.pred=datacells.Latimer2006$cell,

burnin=5000,

mcmc=5000, thin=5,

beta.start=0,

Vrho.start=10,

priorVrho="1/Gamma",

mubeta=0, Vbeta=1.0E6,

shape=0.001, rate=0.001,

Vrho.max=1000,

seed=1234, verbose=1,

save.rho=0,save.p=0)

Time.hSDM <- difftime(Sys.time(),Start,units="sec") # Time difference

# Some outputs

summary(mod.hSDM.Lat2006.iCAR$rho.pred)

summary(mod.hSDM.Lat2006.iCAR$theta.latent)

summary(mod.hSDM.Lat2006.iCAR$theta.pred)

# Parameter estimates

summary(mod.hSDM.Lat2006.iCAR$mcmc)

##

## Iterations = 5001:9996

## Thinning interval = 5

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) -1.87424 0.1867 0.005905 0.02306

## beta.rough 0.04654 0.1929 0.006100 0.03137

## beta.julmint -0.68919 0.1907 0.006032 0.03595
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## beta.pptcv -0.50551 0.3131 0.009900 0.07505

## beta.smdsum -0.05816 0.2581 0.008162 0.06383

## beta.evi -0.12120 0.2250 0.007116 0.03272

## beta.ph1 1.18415 0.3666 0.011594 0.07490

## Vrho 10.01343 1.6786 0.053082 0.14259

## Deviance 741.74700 23.2539 0.735353 1.33653

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -2.2863 -1.98541 -1.85755 -1.75081 -1.5319

## beta.rough -0.3059 -0.09902 0.04951 0.18855 0.4036

## beta.julmint -1.0113 -0.81231 -0.70643 -0.59932 -0.2302

## beta.pptcv -1.1328 -0.70159 -0.50666 -0.29266 0.1193

## beta.smdsum -0.5741 -0.23491 -0.05943 0.12900 0.4283

## beta.evi -0.5819 -0.26339 -0.12097 0.01707 0.3810

## beta.ph1 0.5368 0.92446 1.17545 1.41019 1.9645

## Vrho 7.1367 8.79720 9.92110 11.08064 13.5447

## Deviance 695.1199 725.74487 742.33633 758.12635 786.8725

Contrary to the previous example, and due to the higher information content associated
to the fact that each site is visited several times, it was easier to reach convergence for the
variance of the spatial random effects in this example.

# BUGS model

modelBUGS2.txt <-

"model {

# Likelihood

for (i in 1:N_nonzeroy) {
y[ind[i]] ~ dbin(p[ind[i]], n[ind[i]])

}

for(i in 1:N_LOC){
logit(p[i]) <- rho[i]+xbeta[i]+mu

xbeta[i]<-beta[1]*rough[i] + beta[2]*julmint[i] + beta[3]*pptcv[i] +

beta[4]*smdsum[i] + beta[5]*evi[i] + beta[6]*ph1[i]

}

# CAR prior distribution for spatial random effects:

rho[1:N_LOC] ~ car.normal(adj[], weights[], num[], tau)

for(k in 1:sumNumNeigh) {
weights[k] <- 1 # set equal weights for all neighbors

}
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# Other priors

mu ~ dnorm(0,0.1)

for (i in 1:6) {
beta[i] ~ dnorm(0, 0.2)

}
vrho <- 1/tau

tau ~ dgamma(0.001,0.001)

}"

# Create model.txt file in the working directory

system(paste("echo \"",modelBUGS2.txt,"\" > modelBUGS2.txt",sep=""))

# Data for OpenBUGS

y <- datacells.Latimer2006$y

n <- datacells.Latimer2006$n

rough <- datacells.Latimer2006$rough

julmint <- datacells.Latimer2006$julmint

pptcv <- datacells.Latimer2006$pptcv

smdsum <- datacells.Latimer2006$smdsum

evi <- datacells.Latimer2006$evi

ph1 <- datacells.Latimer2006$ph1

num <- datacells.Latimer2006$num

adj <- neighbors.Latimer2006

ind <- which(datacells.Latimer2006$n!=0)

N_LOC <- length(y)

N_nonzeroy <- length(ind)

sumNumNeigh <- length(adj)

data <- list("y","n","rough","julmint","pptcv","smdsum",

"evi","ph1","num",

"adj","ind","N_LOC","N_nonzeroy","sumNumNeigh")

# Inits

inits <- list(list(mu=1,beta=rep(1.5,6),rho=rep(0,N_LOC),tau=1))

# OpenBUGS call

library(R2OpenBUGS)

Start <- Sys.time() # Start the clock

Open <- bugs(data,inits,

model.file="modelBUGS2.txt",

parameters=c("mu","beta","vrho"),

n.chains=1,

OpenBUGS.pgm="/usr/bin/OpenBUGS",

n.iter=2000,
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n.burnin=1000,

n.thin=5,

DIC=TRUE,

debug=FALSE,

clearWD=FALSE)

Time.OpenBUGS <- difftime(Sys.time(),Start,units="sec") # Time difference

# Time difference

ratio.time <- as.numeric(Time.OpenBUGS)/as.numeric(Time.hSDM)

# Parameter estimates with OpenBUGS

print(Open$summary[,c(1,2)])

## mean sd

## mu -1.85205700 0.1598051

## beta[1] 0.03595761 0.1455205

## beta[2] -0.74706210 0.2354220

## beta[3] -0.49305137 0.2673517

## beta[4] -0.12947751 0.3064259

## beta[5] -0.14999565 0.1899236

## beta[6] 1.15288960 0.2608238

## vrho 9.59598700 1.5356158

## deviance 740.95200000 21.0887086

For this example, hSDM and OpenBUGS gave similar estimates for model parameters.
For the same number of iterations (10000), and for a relatively low number of grid cells
(476), hSDM was more than twice as fast as OpenBUGS.

4.3 ZIB model with data from Latimer et al. (2006)

Because sites have been visited several times, the same data-set can be used to fit a ZIB
model accounting for imperfect detection. If the observation conditions were different
from one visit to another, we would have to use the hSDM.siteocc() function which uses
a mixture model combining two Bernoulli processes. But in this case, the observation
conditions are not specified and can be supposed to be the same so that we can use
the hSDM.ZIB() function of the hSDM package. The hSDM.ZIB() function uses a mixture
model combining a Binomial process for observability and a Bernoulli process for suitability.

# Model

mod.hSDM.Lat2006.ZIB <- hSDM.ZIB(presences=p,

trials=t,

suitability=~rough+julmint+pptcv+smdsum+evi+ph1,

observability=~1,

67



data=data.obs,

suitability.pred=datacells.Latimer2006,

burnin=1000,

mcmc=1000, thin=1,

beta.start=0,

gamma.start=0,

mubeta=0, Vbeta=1.0E6,

mugamma=0, Vgamma=1.0E6,

seed=1234, verbose=1,

save.p=0)

# Some outputs

summary(mod.hSDM.Lat2006.ZIB$prob.p.pred)

summary(mod.hSDM.Lat2006.ZIB$prob.p.latent)

summary(mod.hSDM.Lat2006.ZIB$prob.q.latent)

# Parameter estimates

summary(mod.hSDM.Lat2006.ZIB$mcmc)

##

## Iterations = 1001:2000

## Thinning interval = 1

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) 3.376e-01 0.22592 0.007144 0.024106

## beta.rough -7.023e-03 0.26532 0.008390 0.023803

## beta.julmint 8.855e-01 0.31619 0.009999 0.040362

## beta.pptcv -4.258e-01 0.33632 0.010635 0.044614

## beta.smdsum 6.609e-01 0.32246 0.010197 0.038242

## beta.evi -9.290e-01 0.30885 0.009767 0.027722

## beta.ph1 1.607e+00 0.34856 0.011022 0.035347

## gamma.(Intercept) 1.259e-01 0.03747 0.001185 0.003638

## Deviance 1.838e+03 4.15851 0.131504 0.408601

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -0.06711 0.17945 3.156e-01 0.4737 0.7671

## beta.rough -0.56028 -0.17994 -2.721e-03 0.1628 0.4449
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## beta.julmint 0.22677 0.69281 9.022e-01 1.1097 1.4876

## beta.pptcv -1.10536 -0.61322 -3.971e-01 -0.2145 0.2101

## beta.smdsum 0.05880 0.44203 6.429e-01 0.8748 1.3067

## beta.evi -1.63302 -1.14023 -8.925e-01 -0.6909 -0.4173

## beta.ph1 0.91858 1.38330 1.596e+00 1.8395 2.3208

## gamma.(Intercept) 0.04765 0.09901 1.235e-01 0.1497 0.1992

## Deviance 1831.80407 1834.72720 1.837e+03 1839.9540 1847.4970

# Detection probability

gamma.hat <- mean(mod.hSDM.Lat2006.ZIB$mcmc[,"gamma.(Intercept)"])

delta.est <- inv.logit(gamma.hat)

delta.est

## [1] 0.5314216

Using this type of model, we can estimate the detection probability of the species
(delta.est= 0.53).

4.4 ZIB iCAR model with data from Latimer et al.

(2006)

# Model

mod.hSDM.Lat2006.ZIB.iCAR <- hSDM.ZIB.iCAR(presences=p,

trials=t,

suitability=~rough+julmint+pptcv+smdsum+evi+ph1,

observability=~1,

spatial.entity=s,

data=data.obs,

n.neighbors=datacells.Latimer2006$num,

neighbors=neighbors.Latimer2006,

suitability.pred=datacells.Latimer2006,

spatial.entity.pred=datacells.Latimer2006$cell,

burnin=5000,

mcmc=5000, thin=5,

beta.start=0,

gamma.start=0,

Vrho.start=10,

priorVrho="Uniform",

mubeta=0, Vbeta=1.0E6,

mugamma=0, Vgamma=1.0E6,

shape=2, rate=1,

Vrho.max=10,
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seed=1234, verbose=1,

save.rho=0,save.p=0)

# Some outputs

summary(mod.hSDM.Lat2006.ZIB.iCAR$prob.p.pred)

summary(mod.hSDM.Lat2006.ZIB.iCAR$prob.p.latent)

summary(mod.hSDM.Lat2006.ZIB.iCAR$prob.q.latent)

# Parameter estimates

summary(mod.hSDM.Lat2006.ZIB.iCAR$mcmc)

##

## Iterations = 5001:9996

## Thinning interval = 5

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) 0.7138 0.26719 0.008449 0.014766

## beta.rough 0.5643 0.39828 0.012595 0.046211

## beta.julmint -1.1857 0.59331 0.018762 0.069454

## beta.pptcv -0.7958 0.49922 0.015787 0.061846

## beta.smdsum -0.4783 0.62096 0.019636 0.088051

## beta.evi -0.5099 0.38857 0.012288 0.023951

## beta.ph1 1.3835 0.42089 0.013310 0.035438

## gamma.(Intercept) 0.1299 0.03698 0.001170 0.001329

## Vrho 9.1243 0.76955 0.024335 0.061263

## Deviance 1729.7004 10.98519 0.347382 0.845395

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) 0.21252 0.5418 0.7078 0.90554 1.22941

## beta.rough -0.15347 0.2965 0.5564 0.81978 1.41734

## beta.julmint -2.37556 -1.5903 -1.1581 -0.77204 -0.09995

## beta.pptcv -1.68890 -1.1230 -0.8478 -0.46587 0.26083

## beta.smdsum -1.56522 -0.8984 -0.5346 -0.08909 0.84548

## beta.evi -1.27733 -0.7641 -0.4957 -0.23088 0.17985

## beta.ph1 0.61176 1.0899 1.3566 1.67052 2.17121

## gamma.(Intercept) 0.06067 0.1043 0.1309 0.15590 0.19941

## Vrho 7.11220 8.7303 9.3438 9.73560 9.98959

## Deviance 1710.18198 1721.6650 1729.2054 1737.04701 1752.44302
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# Detection probability

gamma.hat <- mean(mod.hSDM.Lat2006.ZIB.iCAR$mcmc[,"gamma.(Intercept)"])

delta.est <- inv.logit(gamma.hat)

delta.est

## [1] 0.5324361

4.5 Abundance models with data from Kéry & An-

drew Royle (2010)

4.5.1 Presentation of the data

The data-set from Kéry & Andrew Royle (2010) includes repeated count data for the
Willow tit (Poecile montanus, a pesserine bird, see Fig. 4.5) in Switzerland on the period
1999-2003. Data come from the Swiss national breeding bird survey MHB (Monitoring
Haüfige Brutvögel). MHB is based on 264 1-km2 sampling units (quadrats) laid out as a
grid (Fig. 4.6). Since 1999, every quadrat has been surveyed two to three times during most
breeding seasons (15 April to 15 July). The Willow tit is a widespread but moderately
rare bird species. It has a weak song and elusive behaviour and can be rather difficult to
detect.

This data-set is available in the hSDM R package. It can be loaded with the data

command and formated to be used with hSDM functions.

# Load libraries

library(hSDM)

library(sp)

library(raster)

# Load Kéry et al. 2010 data

data(data.Kery2010,package="hSDM")

head(data.Kery2010)

# Normalized variables

elev.mean <- mean(data.Kery2010$elevation)

elev.sd <- sd(data.Kery2010$elevation)

juldate.mean <- mean(c(data.Kery2010$juldate1,

data.Kery2010$juldate2,

data.Kery2010$juldate3),na.rm=TRUE)

juldate.sd <- sd(c(data.Kery2010$juldate1,

data.Kery2010$juldate2,

data.Kery2010$juldate3),na.rm=TRUE)

data.Kery2010$elevation <- (data.Kery2010$elevation-elev.mean)/elev.sd
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Figure 4.5: Willow tit (Poecile montanus).

data.Kery2010$juldate1 <- (data.Kery2010$juldate1-juldate.mean)/juldate.sd

data.Kery2010$juldate2 <- (data.Kery2010$juldate2-juldate.mean)/juldate.sd

data.Kery2010$juldate3 <- (data.Kery2010$juldate3-juldate.mean)/juldate.sd

# Landscape and observation sites

sites.sp <- SpatialPointsDataFrame(coords=data.Kery2010[c("coordx","coordy")],

data=data.Kery2010[,-c(1,2)])

xmin <- min(data.Kery2010$coordx)

xmax <- max(data.Kery2010$coordx)

ymin <- min(data.Kery2010$coordy)

ymax <- max(data.Kery2010$coordy)

ext <- extent(c(xmin,xmax,ymin,ymax))

ncol <- round((xmax-xmin)/10)

nrow <- round((ymax-ymin)/10)

landscape <- raster(ncols=ncol,nrows=nrow,ext)

values(landscape) <- runif(ncell(landscape),0,1)

landscape.po <- rasterToPolygons(landscape)

plot(landscape.po)

plot(sites.sp,add=TRUE,col="red",pch=16)

# Neighborhood

# Rasters must be projected to correctly compute the neighborhood

crs(landscape) <- '+proj=utm +zone=1'

# Cell for each site

cells <- extract(landscape,sites.sp,cell=TRUE)[,1]

# Neighborhood matrix

ncells <- ncell(landscape)

neighbors.mat <- adjacent(landscape, cells=c(1:ncells), directions=8,

pairs=TRUE, sorted=TRUE)

# Number of neighbors by cell
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n.neighbors <- as.data.frame(table(as.factor(neighbors.mat[,1])))[,2]

# Adjacent cells

adj <- neighbors.mat[,2]

# Arranging data

# data.obs

nsite <- length(data.Kery2010$coordx)

count <- c(data.Kery2010$count1,data.Kery2010$count2,data.Kery2010$count3)

juldate <- c(data.Kery2010$juldate1,data.Kery2010$juldate2,

data.Kery2010$juldate3)

site <- rep(1:nsite,3)

data.obs <- data.frame(count,juldate,site)

data.obs <- data.obs[!is.na(data.obs$juldate),]

# data.suit

data.suit <- data.Kery2010[c("coordx","coordy","elevation","forest")]

data.suit$cells <- cells

data.suit <- data.suit[-139,] # Removing site 139 with no juldate

4.5.2 Simple Poisson model

# hSDM.poisson

data.pois <- data.obs

data.pois$elevation <- data.suit$elevation[as.numeric(as.factor(data.obs$site))]

mod.Kery2010.pois <- hSDM.poisson(counts=data.pois$count,

suitability=~elevation+I(elevation^2),

data=data.pois,beta.start=0)

# Outputs

summary(mod.Kery2010.pois$mcmc)

##

## Iterations = 5001:14991

## Thinning interval = 10

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) 0.02814 0.06428 0.002033 0.003726

## beta.elevation 3.08127 0.15347 0.004853 0.017159
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Figure 4.6: Location of the 264 1-km2 quadrats of the Swiss national breeding
bird survey. Points are located on a grid of 10-km2 cells. The grid is covering the
geographical extent of the observation points.
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## beta.I(elevation^2) -1.79995 0.10235 0.003236 0.010673

## Deviance 2157.88058 2.40508 0.076055 0.116160

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -0.09261 -0.01438 0.02764 0.07104 0.1562

## beta.elevation 2.80721 2.97833 3.07749 3.17837 3.3823

## beta.I(elevation^2) -2.00237 -1.86256 -1.79905 -1.73075 -1.6108

## Deviance 2155.19932 2156.14125 2157.27804 2158.97142 2164.3795

# Predictions

npred <- 100

nsamp <- dim(mod.Kery2010.pois$mcmc)[1]

# Abundance-elevation

elev.seq <- seq(500,3000,length.out=npred)

elev.seq.n <- (elev.seq-elev.mean)/elev.sd

beta <- as.matrix(mod.Kery2010.pois$mcmc[,1:3])

tbeta <- t(beta)

X <- matrix(c(rep(1,npred),elev.seq.n,elev.seq.n^2),ncol=3)

N <- matrix(NA,nrow=nsamp,ncol=npred)

for (i in 1:npred) {
N[,i] <- exp(X[i,] %*% tbeta)

}
N.est.pois <- apply(N,2,mean)

N.q1.pois <- apply(N,2,quantile,0.025)

N.q2.pois <- apply(N,2,quantile,0.975)

4.5.3 N-mixture model with imperfect detection

# hSDM.Nmixture

mod.Kery2010.Nmix <- hSDM.Nmixture(# Observations

counts=data.obs$count,

observability=~juldate+I(juldate^2),

site=data.obs$site,

data.observability=data.obs,

# Habitat

suitability=~elevation+I(elevation^2),

data.suitability=data.suit,

# Predictions

suitability.pred=NULL,

# Chains
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burnin=10000, mcmc=5000, thin=5,

# Starting values

beta.start=0,

gamma.start=0,

# Priors

mubeta=0, Vbeta=1.0E6,

mugamma=0, Vgamma=1.0E6,

# Various

seed=1234, verbose=1,

save.p=0, save.N=0)

# Outputs

summary(mod.Kery2010.Nmix$mcmc)

##

## Iterations = 10001:14996

## Thinning interval = 5

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) 0.6726 0.08660 0.002739 0.007342

## beta.elevation 2.7879 0.19608 0.006200 0.023100

## beta.I(elevation^2) -1.7905 0.14436 0.004565 0.018337

## gamma.(Intercept) 0.2537 0.10346 0.003272 0.008333

## gamma.juldate -0.2253 0.08493 0.002686 0.004897

## gamma.I(juldate^2) 0.2658 0.08202 0.002594 0.005667

## Deviance 1887.5828 27.73003 0.876900 2.195556

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) 0.50177 0.6142 0.6744 0.7296 0.83792

## beta.elevation 2.41646 2.6443 2.7935 2.9233 3.17012

## beta.I(elevation^2) -2.07261 -1.8875 -1.7856 -1.6886 -1.51417

## gamma.(Intercept) 0.05384 0.1768 0.2596 0.3280 0.44389

## gamma.juldate -0.38921 -0.2820 -0.2230 -0.1683 -0.05706

## gamma.I(juldate^2) 0.09516 0.2089 0.2669 0.3209 0.41889

## Deviance 1837.06989 1868.2134 1885.6799 1906.7686 1942.45453
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# Predictions

nsamp <- dim(mod.Kery2010.Nmix$mcmc)[1]

# Abundance-elevation

beta <- as.matrix(mod.Kery2010.Nmix$mcmc[,1:3])

tbeta <- t(beta)

N <- matrix(NA,nrow=nsamp,ncol=npred)

for (i in 1:npred) {
N[,i] <- exp(X[i,] %*% tbeta)

}
N.est.Nmix <- apply(N,2,mean)

N.q1.Nmix <- apply(N,2,quantile,0.025)

N.q2.Nmix <- apply(N,2,quantile,0.975)

# Detection-Julian date

juldate.seq <- seq(100,200,length.out=npred)

juldate.seq.n <- (juldate.seq-juldate.mean)/juldate.sd

gamma <- as.matrix(mod.Kery2010.Nmix$mcmc[,4:6])

tgamma <- t(gamma)

W <- matrix(c(rep(1,npred),juldate.seq.n,juldate.seq.n^2),ncol=3)

delta <- matrix(NA,nrow=nsamp,ncol=npred)

for (i in 1:npred) {
delta[,i] <- inv.logit(X[i,] %*% tgamma)

}
delta.est.Nmix <- apply(delta,2,mean)

delta.q1.Nmix <- apply(delta,2,quantile,0.025)

delta.q2.Nmix <- apply(delta,2,quantile,0.975)

4.5.4 Nmixture model with iCAR process

# hSDM.Nmixture.iCAR

mod.Kery2010.Nmix.iCAR <- hSDM.Nmixture.iCAR(# Observations

counts=data.obs$count,

observability=~juldate+I(juldate^2),

site=data.obs$site,

data.observability=data.obs,

# Habitat

suitability=~elevation+I(elevation^2),

data.suitability=data.suit,

# Spatial structure

spatial.entity=data.suit$cells,

n.neighbors=n.neighbors, neighbors=adj,

# Chains

burnin=20000, mcmc=10000, thin=10,

# Starting values
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beta.start=0,

gamma.start=0,

Vrho.start=1,

# Priors

mubeta=0, Vbeta=1.0E6,

mugamma=0, Vgamma=1.0E6,

priorVrho="1/Gamma",

shape=1, rate=1,

# Various

seed=1234, verbose=1,

save.rho=0, save.p=0, save.N=0)

# Outputs

summary(mod.Kery2010.Nmix.iCAR$mcmc)

##

## Iterations = 20001:29991

## Thinning interval = 10

## Number of chains = 1

## Sample size per chain = 1000

##

## 1. Empirical mean and standard deviation for each variable,

## plus standard error of the mean:

##

## Mean SD Naive SE Time-series SE

## beta.(Intercept) 0.3037 0.29294 0.009264 0.033554

## beta.elevation 2.1858 0.52575 0.016626 0.109007

## beta.I(elevation^2) -1.9443 0.31587 0.009989 0.051676

## gamma.(Intercept) -0.7980 0.17325 0.005479 0.048075

## gamma.juldate -0.1653 0.06898 0.002181 0.004864

## gamma.I(juldate^2) 0.1451 0.05597 0.001770 0.003551

## Vrho 15.2809 3.51718 0.111223 0.362266

## Deviance 1383.3447 45.30455 1.432656 7.774908

##

## 2. Quantiles for each variable:

##

## 2.5% 25% 50% 75% 97.5%

## beta.(Intercept) -0.26973 0.1131 0.2992 0.4970 0.8584

## beta.elevation 1.28847 1.8279 2.1260 2.4716 3.5030

## beta.I(elevation^2) -2.63988 -2.1388 -1.9197 -1.7269 -1.3687

## gamma.(Intercept) -1.10129 -0.9177 -0.8203 -0.6720 -0.4640

## gamma.juldate -0.29742 -0.2094 -0.1668 -0.1206 -0.0243

## gamma.I(juldate^2) 0.04049 0.1070 0.1458 0.1805 0.2670

## Vrho 9.69374 12.8070 14.8371 17.2770 23.6666

## Deviance 1300.66478 1351.5389 1381.0295 1411.1528 1479.4193
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# Spatial random effects

rho.pred <- mod.Kery2010.Nmix.iCAR$rho.pred

r.rho.pred <- rasterFromXYZ(cbind(coordinates(landscape),rho.pred))

plot(r.rho.pred)

# Mean abundance by site

ma <- apply(sites.sp@data[,3:5],1,mean,na.rm=TRUE)

points(sites.sp,pch=".",cex=2)

points(sites.sp,pch=1,cex=ma/2)

# Predictions

nsamp <- dim(mod.Kery2010.Nmix.iCAR$mcmc)[1]

# Abundance-elevation

beta <- as.matrix(mod.Kery2010.Nmix.iCAR$mcmc[,1:3])

tbeta <- t(beta)

N <- matrix(NA,nrow=nsamp,ncol=npred)

# Simplified way of obtaining samples for rho

rho.samp <- sample(rho.pred,nsamp,replace=TRUE)

for (i in 1:npred) {
N[,i] <- exp(X[i,] %*% tbeta + rho.samp)

}
N.est.Nmix.iCAR <- apply(N,2,mean)

N.q1.Nmix.iCAR <- apply(N,2,quantile,0.025)

N.q2.Nmix.iCAR <- apply(N,2,quantile,0.975)

# Detection-Julian date

gamma <- as.matrix(mod.Kery2010.Nmix.iCAR$mcmc[,4:6])

tgamma <- t(gamma)

delta <- matrix(NA,nrow=nsamp,ncol=npred)

for (i in 1:npred) {
delta[,i] <- inv.logit(X[i,] %*% tgamma)

}
delta.est.Nmix.iCAR <- apply(delta,2,mean)

delta.q1.Nmix.iCAR <- apply(delta,2,quantile,0.025)

delta.q2.Nmix.iCAR <- apply(delta,2,quantile,0.975)

4.5.5 Comparing predictions from the three different models

# Expected abundance - Elevation

par(mar=c(4,4,1,1),cex=1.4,tcl=+0.5)

plot(elev.seq,N.est.pois,type="l",

xlim=c(500,3000),

ylim=c(0,7),
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Figure 4.7: Estimated spatial random effects. Locations of observation quadrats are
represented by dots. The mean abundance on each quadrat is represented by a circle of
size proportional to abundance.
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lwd=2,

xlab="Elevation (m a.s.l.)",

ylab="Expected abundance",

axes=FALSE)

#lines(elev.seq,N.q1.pois,lty=3,lwd=1)

#lines(elev.seq,N.q2.pois,lty=3,lwd=1)

axis(1,at=seq(500,3000,by=500),labels=seq(500,3000,by=500))

axis(2,at=seq(0,7,by=1),labels=seq(0,7,by=1))

# Nmix

lines(elev.seq,N.est.Nmix,lwd=2,col="red")

#lines(elev.seq,N.q1.Nmix,lty=3,lwd=1,col="red")

#lines(elev.seq,N.q2.Nmix,lty=3,lwd=1,col="red")

# Nmix.iCAR

lines(elev.seq,N.est.Nmix.iCAR,lwd=2,col="dark green")

#lines(elev.seq,N.q1.Nmix.iCAR,lty=3,lwd=1,col="dark green")

#lines(elev.seq,N.q2.Nmix.iCAR,lty=3,lwd=1,col="dark green")

# Detection probability - Julian date

par(mar=c(4,4,1,1),cex=1.4,tcl=+0.5)

plot(juldate.seq,delta.est.Nmix,type="l",

xlim=c(100,200),

ylim=c(0,1),

lwd=2,

col="red",

xlab="Julian date",

ylab="Detection probability",

axes=FALSE)

lines(juldate.seq,delta.q1.Nmix,lty=3,lwd=1,col="red")

lines(juldate.seq,delta.q2.Nmix,lty=3,lwd=1,col="red")

axis(1,at=seq(100,200,by=20),labels=seq(100,200,by=20))

axis(2,at=seq(0,1,by=0.2),labels=seq(0,1,by=0.2))

# Nmix.iCAR

lines(juldate.seq,delta.est.Nmix.iCAR,lwd=2,col="dark green")

lines(juldate.seq,delta.q1.Nmix.iCAR,lty=3,lwd=1,col="dark green")

lines(juldate.seq,delta.q2.Nmix.iCAR,lty=3,lwd=1,col="dark green")
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Figure 4.8: Comparing predictions from the three different models. The three
different models are: Poisson (black), N-mixture (red) and N-mixture with iCAR process
(green). The plain lines represent the predictive posterior mean of the abundance or of
the probability of detection while the dashed lines represent the quantiles at 95% of the
predictive posterior given parameter uncertainty.

82



CHAPTER 5

Some technical aspects of parameter inference

5.1 Likelihood for site-occupancy models

As previously detailed in the mathematical formulation of the site-occupancy model, let’s
consider the random variable zi describing habitat suitability at site i. The random variable
zi can take value 1 or 0 depending on the fact that the habitat is suitable (zi = 1) or not
(zi = 0). Random variable zi can be assumed to follow a Bernoulli distribution of parameter
θi. In this case, θi is the probability that the habitat is suitable. Several visits at time t1,
t2, etc., can occur at site i. Let’s consider the random variable yit representing the presence
of the species at site i and time t. The species is observed at site i (

∑
t yit ≥ 1) only if the

habitat is suitable (zi = 1). The species is unobserved at site i (
∑

t yit = 0) if the habitat is
not suitable (zi = 0), or if the habitat is suitable (zi = 1) but the probability δit of detecting
the species at site i and time t is inferior to 1. Given Hi the set of observations (list of
presence/absence) at site i, the likelihood L for site-occupancy models can be computed
as follow (Eq. 5.1).

(5.1)

L =
∏

i p(Hi)

if
∑

t yit ≥ 1 p(Hi) = p(zi = 1)
∏

t p(yit)
p(Hi) = θi

∏
t=1 p(yit)

with p(yit = 1) = δit and p(yit = 0) = 1− δit

if
∑

t yit = 0 p(Hi) = p(zi = 0) + p(zi = 1)
∏

t p(yit = 0)
p(Hi) = (1− θi) + θi

∏
t (1− δit)

For site-occupancy models, there is a strong advantage of visiting a site several times.
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When a site is visited several times for observation, if the species has been observed at least
once during the different visits, we can assert that the habitat at this site is suitable. And
the fact that the species can be unobserved at this site is only due to imperfect detection.
For more details, please refer to the original paper by MacKenzie et al. (2002) and the very
pedagogical note by Bailey & Adams (2005).

5.2 Random walk for estimating latent variables in

N-mixture models

For N-mixture models, in the hSDM package, the abundances Ni at site i are considered
as latent variables. Ni are estimated using a (simple) reflecting random walk Metropolis
algorithm (Hastings, 1970). Hastings (1970) suggests the following probabilities for the
proposal value N? (Eq. 5.2).

(5.2)

If N = 0
p(N? = 0|N = 0) = 1/2 p(N? = 1|N = 0) = 1/2

If N > 0
p(N? = i+ 1|N = i) = 1/2 p(N? = i− 1|N = i) = 1/2

In practice, if Ni are small, this choice seems to work fairly well and fast to approximate
the probability distributions of Ni, since it suffices that the chain visits only the first few
integers.

The approach used in the hSDM package for estimating parameters of N-mixture
models is different to the one proposed by Royle (2004) where the integral other Ni values
for the likelihood computation is approximated by a sum (see Eq. 3 in Royle (2004)). In
practice, the summation over Ni is restricted to a finite but large bound K. K should be
set high enough so that it does not affect the parameter estimates, but computation time
increases with K. In a Bayesian framework with MCMC methods, this approach (although
leading to equivalent parameter estimates for large values of K) is much slower than the
approach considering latent variables. For a comparison between the two approaches, a
function called hSDM.Nmixture.K(), which uses the approach by summation with bound
K, is available in the hSDM package.

5.3 Adaptive Metropolis within Gibbs

Except for the variance of the spatial random effects of the iCAR models, for which we
proposed conjugate priors, we used an adaptive Metropolis algorithm (Metropolis et al.,
1953; Robert & Casella, 2004) within Gibbs sampler (Casella & George, 1992; Gelfand &
Smith, 1990) to draw the samples of the posterior distribution for model’s parameters.
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The proposal distribution in the Metropolis algorithm is a Normal distribution centered
on the current parameter value and with standard deviation σ. The standard deviation σ is
set to 1 at the beginning of the MCMC and is continuously adjusted so that the acceptance
rate is 0.44 for non-hierarchical models (hSDM.binomial() and hSDM.poisson() functions)
and 0.234 for hierarchical models (other hSDM functions). These values of acceptance rate
(0.44 for low-dimensional models and 0.234 for high-dimensional models) ensure a better
efficiency of the Metropolis algorithm and a faster MCMC convergence (Roberts et al.,
1997; Roberts & Rosenthal, 2009; Roberts et al., 2001).

The actualized value σ? of the standard deviation of the proposal distribution is com-
puted from the current acceptance rate A, the optimal acceptance rate r (0.44 or 0.234)
and the current standard deviation σ (Eq. 5.3).

(5.3)
if A ≥ r σ? = σ(2− (1− A)/(1− r))

else σ? = σ/(2− A/r)

The tuning of the proposal is only done during the burnin period. After the burnin
period, the standard deviation of the proposal distribution is fixed at the current value.
The adaptive Metropolis within Gibbs is written in C code and compiled to optimize
computation efficiency.

5.4 Intrinsic conditional autoregressive (iCAR) model

To capture the spatial autocorrelation, we employ a Gaussian intrinsic conditional au-
toregressive (iCAR) model (Besag, 1974). To specify this model, we assume that the
conditional distribution of the spatial random effect ρj in cell j, given values for the spatial
random effect in all other cells j′ 6= j, depends only on the spatial random effect of the
neighbouring cells of j. Here, we specify that cell j′ is a neighbor of j if their boundaries
intersect (Fig. 5.1). In the actual version of the iCAR process used in the hSDM R pack-
age, the spatial effect for any given cell depends only on the values of ρ for the cells in its
neighborhood, and the neighborhood encompasses only the height immediately adjacent
cells (“king movement” in chess). The neighborhood could alternatively be defined to be
larger, and different weights could be assigned to cells at different distances. Formally,
the Gaussian iCAR model for the spatial random effect at cell i can be presented by a
conditional distribution (Eq. 5.4).

(5.4)

p(ρj|ρj′) ∼ N ormal(µj, Vρ/nj)

µj: mean of ρj′ in the neighborhood of j.
Vρ: variance of the spatial random effects.
nj: number of neighbors for cell j.
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Figure 5.1: Diagram of the grid cell neighborhood used in the intrinsic condi-
tional autoregressive (iCAR) models

The variance of the spatial random effects Vρ is also a parameter to be estimated. We
use a conjugate prior to infer Vρ and we propose two prior distributions: an Inverse-Gamma
distribution with shape and rate parameters or a Uniform distribution with zero for the
lower bound of the interval and one parameter for the upper bound.

5.5 Difference between site-occupancy and ZIB mod-

els

Both site-occupancy or ZIB models (with hSDM.siteocc() or hSDM.ZIB() functions re-
spectively) can be used to model the presence-absence of a species taking into account
imperfect detection. The site-occupancy model can be used in all cases but can be less
convenient and slower to fit when the repeated visits at each site are made under the ex-
act same observation conditions. In this particular case, a Binomial distribution can be
used for the observation process and we suggest the use of a ZIB model for computational
efficiency (see example in Section 4.3).

On the contrary, when the data-set includes several visits at each site under different ob-
servation conditions, a Bernoulli distribution must be used for the observation process (not
a Binomial distribution). In this case, the ZIB models must not be used. For hSDM.ZIB()
functions, the fact that the observations are done on a same site is implicitely assumed
by the data structure (see presences and trials arguments for each observation/site).
Thus, for hSDM.ZIB() functions, there is no site argument to specify the site for each
observation such as for hSDM.siteocc() functions.

86



5.6 Difference between N-mixture and ZIP models

For counts data with imperfect detection, both N-mixture and ZIP models can be used
(with hSDM.Nmixture() or hSDM.ZIP() functions respectively). But the interpretation of
the underlying processes and the structure of the data that can be used differ between the
two models.

For the N-mixture model, the suitability process is modelled by a Poisson distribution.
In this case, we interpret the number of individuals at one site as a function of environ-
mental variables and we assume that there is more individuals when the habitat is more
suitable. In a second step, the observability process is modelled by a Binomial distribution.
We only see a fraction of the individuals present at one site due to observation conditions
(Eq. 5.5).

For the N-mixture model, several visits can occur at one site under different observation
conditions (see response variable y, explicative variables W and probability δ indexed on
both i and t).

(5.5)

Ecological process:
Ni ∼ Poisson(λi)
log(λi) = Xiβ

Observation process:
yit ∼ Binomial(Ni, δit)
logit(δit) = Witγ

For the ZIP model, the suitability process is modelled by a Bernoulli distribution. In
this case, we interpret the habitat at a particular site to be suitable for the species (zi = 1)
or not (zi = 0). Then, the process determining the number of individuals observed at
suitable sites (the abundance) is modelled by a Poisson distribution. Thus, this second
process can include both ecological or detection factors explaining the abundance of the
species at suitable sites (Eq. 5.6). Flores et al. (2009) provide a good example of the
application of a ZIP model to the distribution of tree saplings.

(5.6)

Suitability process:
zi ∼ Bernoulli(θi)
logit(θi) = Xiβ

Abundance process:
yi ∼ Poisson(zi, λi)
log(λi) = Wiγ

Note that ZIP models cannot be used when the data-set includes several visits by

87



site. The likelihood of the ZIP models does not account for the fact that if the species is
observed at least once at one site during the visits, then the habitat at this site is obviously
suitable. Thus, such as for hSDM.ZIB() functions, hSDM.ZIP() functions do not have a site

argument to specify the site for each observation (which is the case for hSDM.Nmixture()

functions).

5.7 Difference between site and spatial.entity

For site-occupancy and N-mixture models taking into account both imperfect detection and
spatial correlation, the user must make the difference between the site argument which in-
dicates the site where the repeated observations have been made, and the spatial.entity
argument which indicates the spatial entity for the spatial correlation process. These two
spatial levels are clearly distinct. Thus, several sites (places visited) can be located in the
same spatial entity (region, state, etc.).

Of course, in some particular cases, the site and the spatial entity can be confounded.
Nonetheless, it is recommended to choose a resonable spatial scale (not too fine) for the
spatial correlation process. With a limited number of spatial entities, there is a possibility
to have more observations in each spatial entity. This should increase the amount of
information for estimating spatial random effects and also speed up the computation with
fewer spatial random effects to estimate. But the number of spatial entities should also
be large enough to be able to estimate the variance of the spatial random effects. For
example, Maas & Hox (2005) suggest a minimum of 50 levels for a random effect factor.

5.8 Computing the neighborhood for iCAR model

Section to be written...

• raster package

• The landscape raster must be projected (otherwise, torus system)

• function adjacent()

5.9 Forecasting species distribution under future cli-

mate change

Section to be written...

• How to obtain predictions

• What about the spatial random effects, do we include them ?
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5.10 Computation time

When comparing OpenBUGS and hSDM outputs, computation times are given for guid-
ance. The computer used for performing the statistical analysis had 4 processors of 2.5 GHz
and 8Go of RAM. There is no parallelization implemented when running the Gibbs sam-
pler, so that only one processor is used. The operating system installed on the computer
was Linux Debian 9.0.

5.11 Package development, git and Sourceforge

Section to be written...

• Git repository: https://github.com/ghislainv/hSDM

• Web site on Sourceforge: https://ecology.ghislainv.fr/hSDM

• Number of line of code

Development work to be done:

• Analytically estimate the latent variables in N-mixture models

• Probit link function for Binomial model

• Random site effect for observability process

• Multispecies approach (see jSDM R package)
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CHAPTER 6

Conclusion

Section to be written...

• Advantages of hSDM

– User friendly

– Speed

– Can handle large data-sets

• Recommendations

– Fitting complex models imply the use of data-sets providing sufficient informa-
tion (in number of observations, in number of repetitions, etc.).

– Users must be careful especially with non-identifiable over-parametrized model.

– Using hierarchical Bayesian species distribution models is only an option. Be
careful with “statistical machismo” (see http://dynamicecology.wordpress.

com/2012/09/11/statistical-machismo/ and Hodges & Reich (2010) for ex-
ample).
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Kühn I, Bierman SM, Durka W, Klotz S (2006) Relating geographical variation in polli-
nation types to environmental and spatial factors using novel statistical methods. New
Phytologist, 172, 127–139.
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Kéry M, Schmidt BR (2008) Imperfect detection and its consequences for monitoring for
conservation. Community Ecology, 9, 207–216.

Lahoz-Monfort JJ, Guillera-Arroita G, Wintle BA (2014) Imperfect detection impacts the
performance of species distribution models. Global Ecology and Biogeography, 23, 504–
515. doi:10.1111/geb.12138. URL http://dx.doi.org/10.1111/geb.12138.

Latimer AM, Wu SS, Gelfand AE, Silander JA (2006) Building statistical models to analyze
species distributions. Ecological Applications, 16, 33–50.

Lee D (2013) Carbayes: An r package for bayesian spatial modeling with conditional
autoregressive priors. Journal of Statistical Software, 55. URL http://www.jstatsoft.

org/v55/i13.

Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659–
1673.

Lichstein JW, Simons TR, Shriner SA, Franzreb KE (2002) Spatial autocorrelation and
autoregressive models in ecology. Ecological Monographs, 72, 445–463.

Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The bugs project: Evolution, critique
and future directions. Statistics in medicine, 28, 3049–3067.

Maas CJ, Hox JJ (2005) Sufficient sample sizes for multilevel modeling. Methodology:
European Journal of Research Methods for the Behavioral and Social Sciences, 1, 86.

MacKenzie DI (2006) Occupancy estimation and modeling: inferring patterns and dynamics
of species occurrence. Academic Press.

97

http://dx.doi.org/10.1111/geb.12138
http://www.jstatsoft.org/v55/i13
http://www.jstatsoft.org/v55/i13


MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002)
Estimating site occupancy rates when detection probabilities are less than one. Ecology,
83, 2248–2255.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of
state calculations by fast computing machines. The journal of chemical physics, 21,
1087–1092.

Miller J, Franklin J, Aspinall R (2007) Incorporating spatial dependence in predictive
vegetation models. Ecological Modelling, 202, 225–242.

Monk J (2014) How long should we ignore imperfect detection of species in the marine
environment when modelling their distribution? Fish and Fisheries, 15, 352–358.

Nichols JD (1992) Capture-recapture models. BioScience, pp. 94–102.

Poley LG, Pond BA, Schaefer JA, Brown GS, Ray JC, Johnson DS (2014) Occupancy
patterns of large mammals in the far north of ontario under imperfect detection and
spatial autocorrelation. Journal of Biogeography, 41, 122–132.

R Development Core Team (2014) R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.

R-project.org. ISBN 3-900051-07-0.

Robert CP, Casella G (2004) Monte Carlo statistical methods, vol. 319. Citeseer.

Roberts GO, Gelman A, Gilks WR, et al. (1997) Weak convergence and optimal scaling of
random walk metropolis algorithms. The annals of applied probability, 7, 110–120.

Roberts GO, Rosenthal JS (2009) Examples of adaptive mcmc. Journal of Computational
and Graphical Statistics, 18, 349–367.

Roberts GO, Rosenthal JS, et al. (2001) Optimal scaling for various metropolis-hastings
algorithms. Statistical science, 16, 351–367. doi:10.1214/ss/1015346320.

Rota CT, Fletcher RJ, Evans JM, Hutto RL (2011) Does accounting for imperfect detection
improve species distribution models? Ecography, 34, 659–670.

Royle JA (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics, 60, 108–115.

Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology: the analysis
of data from populations, metapopulations and communities. Academic Press.

Royle JA, Dorazio RM, Link WA (2007) Analysis of multinomial models with unknown
index using data augmentation. Journal of Computational and Graphical Statistics, 16,
67–85.

98

http://www.R-project.org
http://www.R-project.org


Rue H, Martino S, Chopin N (2009) Approximate bayesian inference for latent gaussian
models by using integrated nested laplace approximations. Journal of the royal statistical
society: Series b (statistical methodology), 71, 319–392.

Sinclair SJ, White MD, Newell GR (2010) How useful are species distribution models for
managing biodiversity under future climates? Ecology and Society, 15, 8.

Smith SI (1868) The geographical distribution of animals. The American Naturalist, 2,
pp. 124–131. URL http://www.jstor.org/stable/2447129.

Sokal RR, Oden NL (1978) Spatial autocorrelation in biology: 2. some biological implica-
tions and four ap- plications of evolutionary and ecological interest. Biological Journal
of the Linnean Society, 10, 229–249.

Stan Development Team (2014) Stan Modeling Language Users Guide and Reference Man-
ual, Version 2.2. URL http://mc-stan.org/.

Thuiller W (2014) Editorial commentary on ‘biomod – optimizing predictions of species
distributions and projecting potential future shifts under global change’. Global Change
Biology, 20, 3591–3592. doi:10.1111/gcb.12728. URL http://dx.doi.org/10.1111/

gcb.12728.

Wallace AR (1876) The geographical distribution of animals: with a study of the relations of
living and extinct faunas as elucidating the past changes of the earth’s surface. Macmillan
& Co., London.

White GC, Burnham KP (1999) Program mark: survival estimation from populations of
marked animals. Bird study, 46, S120–S139.

Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal popula-
tions: modeling, estimation, and decision making. Academic Press.

99

http://www.jstor.org/stable/2447129
http://mc-stan.org/
http://dx.doi.org/10.1111/gcb.12728
http://dx.doi.org/10.1111/gcb.12728

	Introduction
	Species distribution models
	Imperfect detection and spatial correlation of the observations
	Methods and software to account for imperfect detection and spatial correlation
	Objectives of the hSDM R package

	Occurence data
	Binomial model
	Mathematical formulation
	Data generation
	Parameter inference using the hSDM.binomial() function
	Analysis of the results

	Site-occupancy model
	Mathematical formulation
	Data generation
	Parameter inference using the hSDM.siteocc() function
	Analysis of the results

	Binomial iCAR model
	Mathematical formulation
	Data generation with iCAR
	Parameter inference using the hSDM.binomial.iCAR() function
	Analysis of the results with iCAR
	Comparison with OpenBUGS results
	Comparison with GLM results

	Site-occupancy iCAR model
	Mathematical formulation
	Data generation
	Parameter inference using the hSDM.siteocc.iCAR() function
	Comparison with OpenBUGS results
	Comparison with GLM results


	Abundance data
	Additional examples with real data
	Binomial iCAR model with tens of thousands spatial cells
	Binomial iCAR model with data from Latimer2006
	ZIB model with data from Latimer2006
	ZIB iCAR model with data from Latimer2006
	Abundance models with data from Kery2010b
	Presentation of the data
	Simple Poisson model
	N-mixture model with imperfect detection
	Nmixture model with iCAR process
	Comparing predictions from the three different models


	Some technical aspects of parameter inference
	Likelihood for site-occupancy models
	Random walk for estimating latent variables in N-mixture models
	Adaptive Metropolis within Gibbs
	Intrinsic conditional autoregressive (iCAR) model
	Difference between site-occupancy and ZIB models
	Difference between N-mixture and ZIP models
	Difference between site and spatial.entity
	Computing the neighborhood for iCAR model
	Forecasting species distribution under future climate change
	Computation time
	Package development, git and Sourceforge

	Conclusion
	Acknowledgements

