============= New Caledonia ============= Downloading data in parallel ---------------------------- We can use ``geefcc`` to download forest cover change for large countries, for example New-Caledonia. The country will be divided into several tiles which are processed in parallel. If your computer has n cores, n-1 cores will be used in parallel. .. code:: python import os import time import ee import numpy as np import pandas as pd from osgeo import gdal from geefcc import get_fcc, sum_raster_bands import geopandas import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import matplotlib.patches as mpatches from tabulate import tabulate We initialize Google Earth Engine. .. code:: python # Initialize GEE ee.Initialize(project="deforisk", opt_url=("https://earthengine-highvolume." "googleapis.com")) We can compute the number of cores used for the computation. .. code:: python ncpu = os.cpu_count() - 1 ncpu :: 7 Using TMF product ----------------- Downloading data ~~~~~~~~~~~~~~~~ We download the forest cover change data from GEE for New Caledonia for years 2001, 2010 and 2020, using a tile size of one degree. We use the TMF product (version ``v1_2023`` available in geefcc). .. code:: python start_time = time.time() get_fcc( aoi=(163.5, -23, 168.15, -19.51), buff=0.0, years=[2001, 2010, 2020], source="tmf", tile_size=1.0, crop_to_aoi=True, output_file="out_tmf/forest_tmf.tif", ) end_time = time.time() We estimate the computation time to download 20 1-degree tiles using several cores. .. code:: python elapsed_time = (end_time - start_time) / 60 print('Execution time:', round(elapsed_time, 2), 'minutes') :: Execution time: 9.55 minutes Transform multiband fcc raster in one band raster ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We transform the data to have only one band describing the forest cover change with 0 for non-forest, 1 for deforestation on the period 2000--2009, 2 for deforestation on the period 2010--2019, and 3 for the remaining forest in 2020. To do so, we just sum the values of the raster bands. .. code:: python sum_raster_bands(input_file="out_tmf/forest_tmf.tif", output_file="out_tmf/fcc_tmf.tif", verbose=False) We resample at a lower resolution for plotting. .. code:: python infn = "out_tmf/fcc_tmf.tif" outfn = "out_tmf/fcc_tmf_coarsen.tif" scale = gdal.Open(infn).GetGeoTransform()[1] xres = 20 * scale yres = 20 * scale resample_alg = "near" ds = gdal.Warp(outfn, infn, xRes=xres, yRes=yres, resampleAlg=resample_alg) ds = None Plot the forest cover change map ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We prepare the colors for the map. .. code:: python # Colors cols=[(255, 165, 0, 255), (227, 26, 28, 255), (34, 139, 34, 255)] colors = [(1, 1, 1, 0)] # transparent white for 0 cmax = 255.0 # float for division for col in cols: col_class = tuple([i / cmax for i in col]) colors.append(col_class) color_map = ListedColormap(colors) # Labels labels = {0: "non-forest in 2001", 1:"deforestation 2001-2009", 2:"deforestation 2010-2019", 3:"forest in 2020"} patches = [mpatches.Patch(facecolor=col, edgecolor="black", label=labels[i]) for (i, col) in enumerate(colors)] We load the data: country borders and grid. The borders can be downloaded from the `gadm `_ website. .. code:: python # Borders borders_gpkg = os.path.join("data", "borders_NCL.gpkg") borders = geopandas.read_file(borders_gpkg) # Grid grid_gpkg = os.path.join("out_tmf", "grid.gpkg") grid = geopandas.read_file(grid_gpkg) We plot the forest cover change map. .. code:: python with gdal.Open("out_tmf/fcc_tmf_coarsen.tif", gdal.GA_ReadOnly) as ds: raster_image = ds.ReadAsArray() nrow, ncol = raster_image.shape xmin, xres, _, ymax, _, yres = ds.GetGeoTransform() extent = [xmin, xmin + xres * ncol, ymax + yres * nrow, ymax] # Plot fig = plt.figure() ax = plt.subplot(111) ax.imshow(raster_image, cmap=color_map, extent=extent, resample=False) ax.set_aspect("equal") grid_image = grid.boundary.plot(ax=ax, color="grey", linewidth=0.5) borders_image = borders.boundary.plot(ax=ax, color="black", linewidth=0.5) plt.title("Forest cover change 2001-2010-2020, TMF") plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xlim((163, 169)) fig.savefig("fcc_tmf.png", bbox_inches="tight", dpi=200) .. image:: fcc_tmf.png :width: 700 :align: center Lines in black represent country borders and the 10 km buffer. One degree tiles in grey cover the whole buffer and were used to download the data in parallel. Reproject in EPSG:3163 for area computation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python ifile = os.path.join("out_tmf", "fcc_tmf.tif") ofile = os.path.join("out_tmf", "fcc_tmf_epsg3163.tif") ds = gdal.Warp(ofile, ifile, xRes=30, yRes=30, dstSRS="EPSG:3163", resampleAlg="near", targetAlignedPixels=True, creationOptions=["COMPRESS=DEFLATE"]) ds = None Compute statistics ~~~~~~~~~~~~~~~~~~ We use the tool “Raster layer unique values report” in QGIS to get the number of pixels per pixel value in the raster. .. code:: python pixel_count = [n1, n2, n3] = [273463, 257445, 9402021] areas = [round(i * (30 * 30 / 10000)) for i in pixel_count] tmf_areas= {"product": "tmf", "version": "v1_2023", "perc": "", "fc2001": areas[0] + areas[1] + areas[2], "fc2010": areas[1] + areas[2], "fc2020": areas[2], "d1": round(areas[0] / 9), "d2": round(areas[1] / 10)} print(tmf_areas) :: {'product': 'tmf', 'version': 'v1_2023', 'perc': '', 'fc2001': 893964, 'fc2010': 869352, 'fc2020': 846182, 'd1': 2735, 'd2': 2317} Using GFC product and tree cover :math:`\ge` 80% ------------------------------------------------ Downloading data ~~~~~~~~~~~~~~~~ We download the forest cover change data from GEE for New Caledonia for years 2001, 2010 and 2020, using a tile size of one degree. We use the GFC product (version ``v1_11`` available in geefcc) and a tree cover percentage :math:`\ge` 80 to define the forest. .. code:: python start_time = time.time() get_fcc( aoi=(163.5, -23, 168.15, -19.51), buff=0.0, years=[2001, 2010, 2020], source="gfc", perc=80, tile_size=1.0, crop_to_aoi=True, output_file="out_gfc80/forest_gfc80.tif", ) end_time = time.time() We estimate the computation time to download 20 1-degree tiles using several cores. .. code:: python elapsed_time = (end_time - start_time) / 60 print('Execution time:', round(elapsed_time, 2), 'minutes') :: Execution time: 9.1 minutes Transform multiband fcc raster in one band raster ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We transform the data to have only one band describing the forest cover change with 0 for non-forest, 1 for deforestation on the period 2001--2009, 2 for deforestation on the period 2010--2019, and 3 for the remaining forest in 2020. To do so, we just sum the values of the raster bands. .. code:: python sum_raster_bands(input_file="out_gfc80/forest_gfc80.tif", output_file="out_gfc80/fcc_gfc80.tif", verbose=False) We resample at a lower resolution for plotting. .. code:: python infn = "out_gfc80/fcc_gfc80.tif" outfn = "out_gfc80/fcc_gfc80_coarsen.tif" scale = gdal.Open(infn).GetGeoTransform()[1] xres = 20 * scale yres = 20 * scale resample_alg = "near" ds = gdal.Warp(outfn, infn, xRes=xres, yRes=yres, resampleAlg=resample_alg) ds = None Plot the forest cover change map ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We prepare the colors for the map. .. code:: python # Colors cols=[(255, 165, 0, 255), (227, 26, 28, 255), (34, 139, 34, 255)] colors = [(1, 1, 1, 0)] # transparent white for 0 cmax = 255.0 # float for division for col in cols: col_class = tuple([i / cmax for i in col]) colors.append(col_class) color_map = ListedColormap(colors) # Labels labels = {0: "non-forest in 2001", 1:"deforestation 2001-2009", 2:"deforestation 2010-2019", 3:"forest in 2020"} patches = [mpatches.Patch(facecolor=col, edgecolor="black", label=labels[i]) for (i, col) in enumerate(colors)] We plot the forest cover change map. .. code:: python with gdal.Open("out_gfc80/fcc_gfc80_coarsen.tif", gdal.GA_ReadOnly) as ds: raster_image = ds.ReadAsArray() nrow, ncol = raster_image.shape xmin, xres, _, ymax, _, yres = ds.GetGeoTransform() extent = [xmin, xmin + xres * ncol, ymax + yres * nrow, ymax] # Plot fig = plt.figure() ax = plt.subplot(111) ax.imshow(raster_image, cmap=color_map, extent=extent, resample=False) ax.set_aspect("equal") grid_image = grid.boundary.plot(ax=ax, color="grey", linewidth=0.5) borders_image = borders.boundary.plot(ax=ax, color="black", linewidth=0.5) plt.title("Forest cover change 2001-2010-2020, GFC 80%") plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xlim((163, 169)) fig.savefig("fcc_gfc80.png", bbox_inches="tight", dpi=200) .. image:: fcc_gfc80.png :width: 700 :align: center Lines in black represent country borders and the 10 km buffer. One degree tiles in grey cover the whole buffer and were used to download the data in parallel. Reproject in EPSG:3163 for area computation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python ifile = os.path.join("out_gfc80", "fcc_gfc80.tif") ofile = os.path.join("out_gfc80", "fcc_gfc80_epsg3163.tif") ds = gdal.Warp(ofile, ifile, xRes=30, yRes=30, dstSRS="EPSG:3163", resampleAlg="near", targetAlignedPixels=True, creationOptions=["COMPRESS=DEFLATE"]) ds = None Compute statistics ~~~~~~~~~~~~~~~~~~ .. code:: python pixel_count = [n1, n2, n3] = [41629, 27698, 7276643] areas = [round(i * (30 * 30 / 10000)) for i in pixel_count] gfc80_areas= {"product": "gfc", "version": "v1_11(2023)", "perc": 80, "fc2001": areas[0] + areas[1] + areas[2], "fc2010": areas[1] + areas[2], "fc2020": areas[2], "d1": round(areas[0] / 9), "d2": round(areas[1] / 10)} print(gfc80_areas) :: {'product': 'gfc', 'version': 'v1_11(2023)', 'perc': 80, 'fc2001': 661138, 'fc2010': 657391, 'fc2020': 654898, 'd1': 416, 'd2': 249} Using GFC product and tree cover :math:`\ge` 60% ------------------------------------------------ Downloading data ~~~~~~~~~~~~~~~~ We download the forest cover change data from GEE for New Caledonia for years 2000, 2010 and 2020, using a tile size of one degree. We use the GFC product (version ``v1_11`` available in geefcc) and a tree cover percentage :math:`\ge` 60 to define the forest. .. code:: python start_time = time.time() get_fcc( aoi=(163.5, -23, 168.15, -19.51), buff=0.0, years=[2001, 2010, 2020], source="gfc", perc=60, tile_size=1.0, crop_to_aoi=True, output_file="out_gfc60/forest_gfc60.tif", ) end_time = time.time() We estimate the computation time to download 20 1-degree tiles using several cores. .. code:: python elapsed_time = (end_time - start_time) / 60 print('Execution time:', round(elapsed_time, 2), 'minutes') :: Execution time: 8.87 minutes Transform multiband fcc raster in one band raster ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We transform the data to have only one band describing the forest cover change with 0 for non-forest, 1 for deforestation on the period 2001--2009, 2 for deforestation on the period 2010--2019, and 3 for the remaining forest in 2020. To do so, we just sum the values of the raster bands. .. code:: python sum_raster_bands(input_file="out_gfc60/forest_gfc60.tif", output_file="out_gfc60/fcc_gfc60.tif", verbose=False) We resample at a lower resolution for plotting. .. code:: python infn = "out_gfc60/fcc_gfc60.tif" outfn = "out_gfc60/fcc_gfc60_coarsen.tif" scale = gdal.Open(infn).GetGeoTransform()[1] xres = 20 * scale yres = 20 * scale resample_alg = "near" ds = gdal.Warp(outfn, infn, xRes=xres, yRes=yres, resampleAlg=resample_alg) ds = None Plot the forest cover change map ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We plot the forest cover change map. .. code:: python with gdal.Open("out_gfc60/fcc_gfc60_coarsen.tif", gdal.GA_ReadOnly) as ds: raster_image = ds.ReadAsArray() nrow, ncol = raster_image.shape xmin, xres, _, ymax, _, yres = ds.GetGeoTransform() extent = [xmin, xmin + xres * ncol, ymax + yres * nrow, ymax] # Plot fig = plt.figure() ax = plt.subplot(111) ax.imshow(raster_image, cmap=color_map, extent=extent, resample=False) ax.set_aspect("equal") grid_image = grid.boundary.plot(ax=ax, color="grey", linewidth=0.5) borders_image = borders.boundary.plot(ax=ax, color="black", linewidth=0.5) plt.title("Forest cover change 2001-2010-2020, GFC 50%") plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xlim((163, 169)) fig.savefig("fcc_gfc60.png", bbox_inches="tight", dpi=200) .. image:: fcc_gfc60.png :width: 700 :align: center Lines in black represent country borders and the 10 km buffer. One degree tiles in grey cover the whole buffer and were used to download the data in parallel. Reproject in EPSG:3163 for area computation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: python ifile = os.path.join("out_gfc60", "fcc_gfc60.tif") ofile = os.path.join("out_gfc60", "fcc_gfc60_epsg3163.tif") ds = gdal.Warp(ofile, ifile, xRes=30, yRes=30, dstSRS="EPSG:3163", resampleAlg="near", targetAlignedPixels=True, creationOptions=["COMPRESS=DEFLATE"]) ds = None Compute statistics ~~~~~~~~~~~~~~~~~~ .. code:: python pixel_count = [n1, n2, n3] = [73891, 60240, 9860795] areas = [round(i * (30 * 30 / 10000)) for i in pixel_count] gfc60_areas= {"product": "gfc", "version": "v1_11(2023)", "perc": 60, "fc2001": areas[0] + areas[1] + areas[2], "fc2010": areas[1] + areas[2], "fc2020": areas[2], "d1": round(areas[0] / 9), "d2": round(areas[1] / 10)} print(gfc60_areas) :: {'product': 'gfc', 'version': 'v1_11(2023)', 'perc': 60, 'fc2001': 899544, 'fc2010': 892894, 'fc2020': 887472, 'd1': 739, 'd2': 542} Summary of the results ---------------------- .. code:: python res_df = pd.DataFrame([tmf_areas, gfc80_areas, gfc60_areas]) res_df.to_csv(os.path.join("comparison_geefcc_nc.csv"), index=False) tabulate(res_df, headers=res_df.columns, tablefmt="orgtbl") .. table:: **Comparing forest-cover change products for New Caledonia.** **fc**: forest cover (in ha), **d1**: mean annual deforestation (in ha) in the first period 2001--2010, **d2**: mean annual deforestation (in ha) in the second period 2010--2020, **perc**: tree cover threshold (in %) used to define the forest with GFC. +---+---------+--------------+------+--------+--------+--------+------+------+ | \ | product | version | perc | fc2001 | fc2010 | fc2020 | d1 | d2 | +===+=========+==============+======+========+========+========+======+======+ | 0 | tmf | v1\_2023 | \ | 893964 | 869352 | 846182 | 2735 | 2317 | +---+---------+--------------+------+--------+--------+--------+------+------+ | 1 | gfc | v1\_11(2023) | 80 | 661138 | 657391 | 654898 | 416 | 249 | +---+---------+--------------+------+--------+--------+--------+------+------+ | 2 | gfc | v1\_11(2023) | 60 | 899544 | 892894 | 887472 | 739 | 542 | +---+---------+--------------+------+--------+--------+--------+------+------+ Forest cover for TMF and GFC with tree cover :math:`\ge` 60% are similar in 2020 (about 850,000 ha) but the annual deforestation is 4-5 times lower when using the GFC product (e.g. 542 ha/yr for GFC in the period 2010--2020 against 2317 ha/yr for TMF for the same period).