=============== Large countries =============== Download the data from GEE -------------------------- We can use ``geefcc`` to download forest cover change for large countries, for example Perou (iso code “PER”). The country will be divided into several tiles which are processed in parallel. If your computer has n cores, n-1 cores will be used in parallel. .. code:: python import os import time import ee import numpy as np from osgeo import gdal from geefcc import get_fcc, sum_raster_bands import geopandas import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap import matplotlib.patches as mpatches We initialize Google Earth Engine. .. code:: python # Initialize GEE ee.Initialize(project="forestatrisk", opt_url=("https://earthengine-highvolume." "googleapis.com")) We can compute the number of cores used for the computation. .. code:: python ncpu = os.cpu_count() - 1 ncpu :: 3 We download the forest cover change data from GEE for Peru for years 2000, 2010 and 2020, using a buffer of about 10 km around the border (0.089... decimal degrees) and a tile size of one degree. A buffer can be useful if we want to avoid “edge effects”, while computing distance to forest edge for example. One degree tiles are used to download the data from GEE in parallel. .. code:: python start_time = time.time() get_fcc( aoi="PER", buff=0.08983152841195216, years=[2000, 2010, 2020], source="tmf", tile_size=1, output_file="out_tmf/forest_tmf.tif", ) end_time = time.time() We estimate the computation time to download 159 1-degree tiles using several cores. .. code:: python elapsed_time = (end_time - start_time) / 60 print('Execution time:', round(elapsed_time, 2), 'minutes') :: Execution time: 30.76 minutes Transform multiband fcc raster in one band raster ------------------------------------------------- We transform the data to have only one band describing the forest cover change with 0 for non-forest, 1 for deforestation on the period 2000--2009, 2 for deforestation on the period 2010--2019, and 3 for the remaining forest in 2020. To do so, we just sum the values of the raster bands. .. code:: python sum_raster_bands(input_file="out_tmf/forest_tmf.tif", output_file="out_tmf/fcc_tmf.tif", verbose=False) We resample at a lower resolution for plotting. .. code:: python infn = "out_tmf/fcc_tmf.tif" outfn = "out_tmf/fcc_tmf_coarsen.tif" scale = gdal.Open(infn).GetGeoTransform()[1] xres = 20 * scale yres = 20 * scale resample_alg = "near" ds = gdal.Warp(outfn, infn, xRes=xres, yRes=yres, resampleAlg=resample_alg) ds = None Plot the forest cover change map -------------------------------- We prepare the colors for the map. .. code:: python # Colors cols=[(255, 165, 0, 255), (227, 26, 28, 255), (34, 139, 34, 255)] colors = [(1, 1, 1, 0)] # transparent white for 0 cmax = 255.0 # float for division for col in cols: col_class = tuple([i / cmax for i in col]) colors.append(col_class) color_map = ListedColormap(colors) # Labels labels = {0: "non-forest in 2000", 1:"deforestation 2000-2009", 2:"deforestation 2010-2019", 3:"forest in 2020"} patches = [mpatches.Patch(facecolor=col, edgecolor="black", label=labels[i]) for (i, col) in enumerate(colors)] We load the data: country borders, buffer, and grid. .. code:: python # Borders borders_gpkg = os.path.join("out_tmf", "gadm41_PER_0.gpkg") borders = geopandas.read_file(borders_gpkg) # Buffer buffer_gpkg = os.path.join("out_tmf", "gadm41_PER_buffer.gpkg") buffer = geopandas.read_file(buffer_gpkg) # Grid grid_gpkg = os.path.join("out_tmf", "min_grid.gpkg") grid = geopandas.read_file(grid_gpkg) We plot the forest cover change map. .. code:: python with gdal.Open("out_tmf/fcc_tmf_coarsen.tif", gdal.GA_ReadOnly) as ds: raster_image = ds.ReadAsArray() nrow, ncol = raster_image.shape xmin, xres, _, ymax, _, yres = ds.GetGeoTransform() extent = [xmin, xmin + xres * ncol, ymax + yres * nrow, ymax] # Plot fig = plt.figure() ax = plt.subplot(111) ax.imshow(raster_image, cmap=color_map, extent=extent, resample=False) grid_image = grid.boundary.plot(ax=ax, color="grey", linewidth=0.5) borders_image = borders.boundary.plot(ax=ax, color="black", linewidth=0.5) buffer_image = buffer.boundary.plot(ax=ax, color="black", linewidth=0.5) plt.title("Forest cover change 2000-2010-2020, TMF") plt.legend(handles=patches, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) fig.savefig("fcc.png", bbox_inches="tight", dpi=200) .. image:: fcc.png :width: 700 :align: center Lines in black represent country borders and the 10 km buffer. One degree tiles in grey cover the whole buffer and were used to download the data in parallel.