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ABSTRACT 12 

Accurate characterization of the tropical moist forests changes is needed to support conservation 13 

policies and to better quantify their contribution to global carbon fluxes. We document - at 14 

pantropical scale - the extent of these forests and their changes (degradation, deforestation and 15 

recovery) over the last three decades. We estimate that 17% of the tropical moist forests have 16 

disappeared since 1990 with a remaining area of 1060 million ha in 2019, from which 8.5% are 17 

degraded. Our study underlines the importance of the degradation process in such ecosystems, in 18 

particular as precursor of deforestation and in the recent increase of the tropical moist forest 19 

disturbances. Without reduction of the present disturbance rates, undisturbed forests will disappear 20 

entirely in large tropical humid regions by 2050. Our study suggests reinforcing actions to prevent 21 

the first disturbance scar that leads to forest clearance in 45% of the cases. 22 

 23 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 19, 2020. . https://doi.org/10.1101/2020.09.17.295774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.17.295774


Page 2 of 49 
 

INTRODUCTION 24 

Tropical moist forests (TMF) have a huge environmental value. They play an important role in 25 

biodiversity conservation, terrestrial carbon cycle, hydrological regimes, indigenous population 26 

subsistence and human health (1-5). They are increasingly recognized as an essential element of 27 

any strategy to mitigate climate change (6, 7). Deforestation, and degradation compromise the 28 

functioning of tropical forests as an ecosystem, lead to biodiversity loss (1, 4, 5, 8, 9) and reduced 29 

carbon storage capacity (10-17). Deforestation and fragmentation are increasing the risk of virus 30 

disease outbreaks (18-20).   31 

 32 

For humanity wellbeing, sustainable economic growth and conservation of the remaining TMF 33 

constitute one of the largest challenges and shared responsibility. A consistent, accurate and 34 

geographically explicit characterization of the long-term disturbances at the pantropical scale is a 35 

prerequisite for elaborating a coherent territorial planning towards Sustainable Development Goals 36 

(SDGs) and the Nationally determined contributions (NDCs) of the Paris Agreement (2015). 37 

Advances in remote-sensing, cloud computing facilities, and free access to the Landsat satellite 38 

archive (21-23), enable systematic monitoring and consistent dynamic characterization of the entire 39 

TMF across a long period. Global maps have been derived to quantify tree cover loss since 2000 40 

(24-25) and to identify remaining intact forest landscapes (17). However, detailed spatial 41 

information on the long-term dynamics of tropical moist forests and particularly on forest 42 

degradation and post-disturbances development stages is still missing to accurately estimate the 43 

carbon loss associated with forest disturbances (2, 13, 15) and assess their impact on biodiversity 44 

(5, 8).  45 

 46 

 47 

 48 
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RESULTS AND DISCUSSION 49 

Here we provide new information through a wall-to-wall mapping of tropical moist forest cover 50 

dynamics over a long-term period (January 1990 to December 2019) at 0.09 ha resolution (freely 51 

available from https://forobs.jrc.ec.europa.eu/TMF/) (see Materials and Methods). This validated 52 

dataset depicts the TMF extent and the related disturbances (deforestation and degradation), and 53 

post-disturbances recovery on an annual basis over the last three decades (see Supplementary Text 54 

on the annual change dataset, and fig. S1). A major innovation consists of  characterizing the 55 

sequential dynamics of changes by providing transition stages from the initial observation period 56 

to the end of the year 2019, i.e. undisturbed forest, degraded forest, forest regrowth, deforested 57 

land, conversion to plantations, conversion to water, afforestation, and changes within the 58 

mangroves (Figs. 1 and 2, see Supplementary Text on the transition map and figs. S2 to S7), as 59 

well as the timing (dates and duration), recurrence and intensity of each disturbance. 60 

For the first time at the pantropical scale the occurrence and extent of the forest cover degradation 61 

is documented on an annual basis in addition to the deforestation. This has been achieved thanks to 62 

the analysis of each individual valid observation of the Landsat archive (see Data and Mapping 63 

method Sections) allowing to capture short-duration disturbances such as selective logging (Fig. 64 

2F, fig. S3), fires (Fig. 2B), and severe weather events (hurricanes, dryness) (fig. S7).  65 

The accuracy of the disturbance mapping is 91.4%. Uncertainties in the area estimates were 66 

quantified based on a sample-based reference in accordance with the latest statistical good practices 67 

(26) and indicates an underestimation of the forest disturbance areas by 11.8% (representing 68 

38.4 million ha, with 15 million ha confidence interval at 95%) (see Section and Supplementary 69 

Text on the validation, figs. S8 to S10 and tables S1 to S4).  70 

 71 
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Main results on degradation  72 

The analysis of the yearly dynamics of TMF disturbances over the last 30 years underlines the 73 

importance of the degradation process in tropical moist forest ecosystems with the following key 74 

outcomes (Tables 1, 2 and 3, the Trend analysis section in Materials and Methods, fig. S11):  75 

(i) During the last three decades, 195.1 million ha of TMF have disappeared and 76 

106.5 million ha are in a degraded status (Table 3). This represents 8.4% of the 1059.6 77 

million ha of forest area remaining in January 2020. Degraded forests represent 33% of 78 

the observed disturbances with high variability between regions and countries, ranging 79 

from 96% in Venezuela, 74% in Gabon, and 69% in Papua New Guinea to 21% in Brazil 80 

and Madagascar, and 13% in Cambodia (Table S6).  40.7% of the degraded forests are 81 

in Asia-Oceania (compared to 36.9% in Latin America and 22.3% in Africa) (Table 3).  82 

(ii) 84.5% of the degraded forests (i.e. 90 million ha) are resulting from short-term 83 

disturbances (observed over less than 1-year duration, mostly due to selective logging, 84 

natural events and light-impact fires), from which 30 million ha have been degraded 85 

repeatedly 2 or 3 times over the last 30 years (observed each time along a short-term 86 

period). The remaining 15.5% (16.5 million ha) are mainly resulting from intense fires, 87 

with a disturbance duration between 1 to 2.5 years. 88 

(iii) 45.4% of the degradation (88.6 million ha) is a precursor of deforestation events 89 

occurring on average after 7.5 years (without significant variability between continents). 90 

This is particularly true for South-East Africa and South-East Asia that show 91 

respectively 60.4% (with 65% for Madagascar) and 53% (with 59% for Cambodia) of 92 

degraded forests becoming deforested in a second step (Table 2). These proportions are 93 

underestimated because 45.4% of recent degradation (e.g. in the last 7 years) will most 94 

likely be deforested in future years.  95 
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(iv) A further 30.3% of the undisturbed forest areas (291.8 million ha) are potentially 96 

disturbance-edge-affected forests, i.e. located within 120 meters from a disturbance (see 97 

Materials and Methods). This proportion indicates a higher forest fragmentation 98 

proportion in Asia (45.2%) compared to other continents (25.6% and 28.9% respectively 99 

in the Americas and Africa). 100 

(v) 82.8% of the TMF mapped as degraded in December 2019 corresponds to short-term 101 

disturbances that have never been identified so far at the pan-tropical scale. Over the 102 

period covered by the Global Forest Change (GFC) product (24), i.e. 2001-2019, 21.2 103 

million ha have been captured as a tree cover loss compared to 86 million ha detected 104 

as degraded forests by our study during the same period (see Section on the comparison 105 

with the GFC dataset, Fig. 4 and table S5).  106 

(vi) We show that the annual rate of degradation is highly related to climatic conditions 107 

(Figs. 3 and 4, fig. S11). Whereas the trends in deforestation rates seem to be related to 108 

changes in national territorial policies, degradation rates usually show peaks during 109 

drought periods and do not seem to be impacted by forest conservation policies. The 110 

drought conditions that occurred during strong and very strong El Niño southern 111 

oscillation (ENSO) events of 1997-1998 and 2015-2016 were optimal for forest fires 112 

(27-29) and resulted in a strong increase of forest degradation (28). The impact of these 113 

fires in 2015-2016 is particularly strong and visible in all regions except in South-East 114 

Africa.   115 

Our results stress the paramount importance of (i) integrating measures for reducing degradation in 116 

forest conservation and climate mitigation programs, and (ii) considering forest degradation as risk 117 

factor of deforestation and as an indicator of climate change and climate oscillations. We anticipate 118 

that a better knowledge of forest degradation processes and its resulting fragmentation will help to 119 
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assess accurately the anthropogenic impact on the tropical ecosystem services and the effects on 120 

biosphere-atmosphere-hydrosphere feedbacks. Future policies will have to account for this finding. 121 

 122 

Main results on deforestation and post-deforestation regrowths 123 

Deforestation in TMF cover is documented in an unprecedented comprehensive manner: (i) by 124 

covering a 30-year period of analysis, (ii) by mapping deforestation occurring after degradation and 125 

deforestation followed by a regrowth, (iii) by identifying specific forest conversion to commodities 126 

or water (Figs. 2G and 2I), (iv) by including changes within the mangroves (Fig. 2A), and (v) by 127 

documenting each deforestation event at the pixel level by its timing (date and duration), intensity, 128 

recurrence and when appropriate, start date and duration of post-disturbance regrowth.  129 

 130 

Overall, 17.2% of the initial TMF area (i.e. 207.4 over 1267.1 million ha), have disappeared since 131 

1990, down to 1059.6 million ha of TMF in January 2020 (Tables 1, 2 and 3). We report a rate of 132 

gross loss of TMF area for the entire pan-tropical region varying from 5.5 to 7.7 million ha / year 133 

with the period (Table 4). Comparison with previous studies results in the following outcomes: 134 

(i) Estimations reported by FAO national statistics (30) and the sample-based estimations from 135 

Tyukavina et al. (31) for the natural tropical forest – that includes both moist and dry forest 136 

types - are higher by 0.9% and 27% respectively, compared to our TMF deforestation rates 137 

(excluding the conversion to tree plantations to get closer to the natural forest definition of 138 

these two studies) for the same period (Table 4). At the continental scale, Tyukavina et al. 139 

(31) shows lower estimates than our study for Africa (-23%) and for Asia (-4%), and higher 140 

estimates for Latin America (+16%).  141 

(ii) Comparison with GFC loss (24) (see Section on the Comparison with the GFC dataset and 142 

Fig. 4) shows a lower deforestation rate (-33%) compared to our study for the period 2000-143 
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2012 over the same forest extent (using our TMF extent for the year 2000) (Table 4). 144 

Underestimation of GFC loss has been documented by previous studies (31, 33). Tyukavina 145 

et al. (31) reported an underestimation of GFC loss of 19.4% considering the entire forest 146 

cover (moist and deciduous) loss during the period 2001-2012, with a larger 147 

underestimation for Africa (-39.4%) compared to other continents (-13% for Latin America 148 

and -5.7% for Asia). The ranking of this underestimation by continent is consistent with the 149 

ranking observed in our study (first Africa, second Latin America and third Asia). The 150 

differences with GFC loss are explained by three specific assets of our approach: (i) the use 151 

of single-date images enabling the detection of short-duration disturbance events (i.e. visible 152 

only during a few weeks from space) compared to the use of annual syntheses, (ii) a 153 

dedicated algorithm for TMF enabling the monitoring of seven forest cover change classes 154 

compared to the global monitoring of forest clearance, and (iii) a cloud masking and quality 155 

control optimized for equatorial regions enabling a more comprehensive analysis of the 156 

Landsat archive.  157 

(iii)Comparison with the Brazilian PRODES data (29) using their primary forest extent (Fig. 4) 158 

shows a similar decrease of annual deforestation rates between the 2000’s and the last 159 

decade that can be related to a set of economic and public policy actions (28). Differences 160 

in the deforestation rates are observed (i) during the period 2001-2004 with a higher 161 

deforestation rate for PRODES (2.32 million ha/year) compared to our study (2 million 162 

ha/year) and to GFC loss (1.53 million ha/year), and (ii) in the last ten years with a lower 163 

average deforestation rate for PRODES compared to our study and GFC loss (0.67, 1.1 and 164 

1.34 million ha/year respectively) (Table 4). These differences are accentuated in the last 165 

five years (0.77, 1.33, and 1.76 million ha/year respectively). Discrepancies in area 166 

estimates between our product and the PRODES data are explained by (i) difference in 167 

minimum mapping units (0.09 ha compared to 6.25 ha in PRODES), and (ii) impacts of 168 
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strong fires that are captured in our study (deforestation followed by forest regrowth) and 169 

in GFC loss but are discarded in the PRODES approach (because not considered as 170 

deforestation).  171 

 172 

This study documents – in an unprecedented manner - the extent and age of post-deforestation 173 

regrowths (young secondary forests that are regenerating after human or natural disturbance) for 174 

the entire pan-tropical domain. These secondary forests grow rapidly in tropical moist conditions 175 

and absorb large amounts of carbon, whereas they were poorly documented. We show that 13.5% 176 

of the deforested areas (i.e. 29.5 Million ha) are regrowthing in a subsequent stage, with 33% of 177 

these secondary forests aged more than 10 years at the end of 2019 (Table 3). The proportion of 178 

secondary forests within the total deforestation is higher in Asia (18.3%) compared to Latin 179 

America (12.3%) and Africa (7.9%). The disturbance events followed by a forest regrowth are 180 

including intense fires and these are accentuated by drought conditions. This is well visible for 181 

South America (Fig. 3) for years 1997-1998 and 2010. Additionally, 10 Million ha are characterized 182 

as evergreen vegetation regrowth of areas initially classified as non-forest cover, i.e. that can be 183 

considered as forestation (i.e. afforestation and reforestation) aged of more than 10 years. 184 

 185 

This study confirms that most of the deforestation caused by the expansion of oil palm and rubber 186 

and assigned to the commodity classes in our study (see Supplementary Text on ancillary datasets, 187 

Figs. 2I and 3B, Fig. S11 and table S6) is concentrated in Asia with 18.3 million ha (representing 188 

86% of the entire TMF conversion to plantations), and more specifically in Indonesia (57.4%) and 189 

Malaysia (23.8%). 190 

 191 

 192 

 193 
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Deforestation and degradation trends  194 

The evolution of the deforestation and degradation over the last three decades show the highest 195 

peaks of annual disturbances in Latin America and Southeast Asia during the period 1995-2000 196 

with 6.3 million ha/year and 6.2 million ha/year respectively. The ENSO of 1997-1998 may - at 197 

least partially - explain these peaks of forest disturbances, in particular for Indonesia and Brazil 198 

where such peaks are manifest in the annual change trends with the highest proportion of 199 

degradation events over the total disturbance areas (Figs. 3 and 5, fig. S11). Between 2000-2004 200 

and 2015-2019, the disturbance rates decreased by half in South-America and by 45% in South-201 

East Africa and continental South-Est Asia. Brazil - that accounts for 29% of the remaining world’s 202 

TMF - largely contributed to this reduction (from 4.3 million ha/year down to 2.1 million ha/year) 203 

(Figs. 3, 4, and 5, Table 4, table S6 and fig. S11).  204 

 205 

In the recent years, our study shows a dramatic increase of disturbances rates (deforestation and 206 

degradation) (+ 2.1 million ha/year for the last 5 years compared to the period 2005-2014) to reach 207 

a level close to that of the early 2000s (Tables 2 and 3) with the highest increases observed in West 208 

Africa and Latin America (48% higher). Degradation is the main contributor of this recent increase 209 

(average increase of 38% whereas annual deforestation decreased by 5%) caused notably by 210 

specific climatic conditions in 2015-2016 (29) (Figs. 3 and 5). Asia-Oceania region shows a lower 211 

increase of degradation rate (31%) compared to Africa (34%) and Latin America (49%) and a much 212 

higher decrease of deforestation rate (28%) compared to Africa (5%) and Latin America (12%).  213 

 214 

 215 

 216 

 217 
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Undisturbed TMF decline and projections 218 

Since 1990, the extent of undisturbed TMF has declined by 23.9% with an average rate of loss of 219 

10.8 million ha/year. The decline of undisturbed TMF is particularly dramatic for Ivory Coast 220 

(81.5% of their extent in 1990), Mexico (73.7%), Ghana (70.8%), Madagascar (69%), Vietnam 221 

(67.8%), Angola (67.1%), Nicaragua (65.8%), Lao People's Democratic Republic (PDR) (65.1%), 222 

and India (63.9%) (table S6). If the average rates of the period 2010-2019 would remain constant 223 

over a short or medium term future (see Materials and Methods, fig. S12), undisturbed TMF would 224 

disappear by 2026-2029 in Ivory Coast and Ghana, by 2040 in Central America and Cambodia, by 225 

2050 in Nigeria, Lao PDR, Madagascar and Angola, and by 2065 for all the countries of continental 226 

Southeast Asia and Malaysia. By 2050, 15 countries –including Malaysia (the 9th country with the 227 

biggest TMF forest) - will lose more than 50% of their undisturbed forests (table S6). 228 

 229 

 230 

CONCLUSION 231 

It is now possible to monitor deforestation and degradation in tropical moist forests consistently 232 

over a long historical period and at fine spatial resolution. The mapping of forest transition stages 233 

will allow to derive more targeted indicators to measure the achievements in forest, biodiversity, 234 

health and climate policy goals from local to international levels (34). Our study shows that tropical 235 

moist forests are disappearing at much faster rates than what was previously estimated and 236 

underlines the precursor role of forest degradation in this process. These results should alert 237 

decision makers on the pressing need to reinforce actions for preserving tropical forest, in particular 238 

by avoiding the first scar of degradation that is most likely leading to forest clearance later on. 239 

 240 

  241 
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MATERIALS AND METHODS 242 

Study area and Forest types 243 

Our study covers the tropical moist forests, which include the following formations (35): the 244 

lowland evergreen rain forest, the montane rain forest, the mangrove forest, the swamp forest, the 245 

tropical semi-evergreen rain forest, and the moist deciduous forest. Evergreenness varies from 246 

permanently evergreen to evergreen seasonal (mostly evergreen but with individual trees that may 247 

lose their leaves),  semi-evergreen seasonal (up to about one third of the top canopy can be 248 

deciduous, though not necessarily leafless at the same time), and moist deciduous (dominant 249 

deciduous species with evergreen secondary canopy layer).  250 

 251 

We do not intent to map specifically intact or primary forest as the Landsat observation period is 252 

too short to discriminate never-cut primary forest from second growth naturally recovered forest 253 

older than the observation period. However, by documenting all the disturbances observed over the 254 

last three decades, the remaining undisturbed TMF in 2019 is getting closer to the primary forest 255 

extent. Whereas our entire TMF - that includes undisturbed and degraded forests - in 1990 and 2019 256 

are comparable, our undisturbed forest of 1990 and 2019 should be carefully compared.  257 

 258 

Our study area covers the following Global Ecological Zones (36): ‘Tropical rainforest’, ‘Tropical 259 

moist forest’, ‘Tropical mountain system’ and ‘Tropical dry forest’ (fig. S13) and stops at the 260 

borders of China, Pakistan, Uruguay, and USA. The TMF are located mostly in the tropical moist 261 

and humid climatic domains but also include small areas of gallery forests in the tropical dry 262 

domain.  263 

 264 

 265 

 266 
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Data  267 

The Landsat archive is the only free and long-term satellite image record suited for analysing 268 

vegetation dynamics at fine spatial resolution. We used the entire L1T archive (orthorectified top 269 

of atmosphere reflectance) acquired between July 1982 and December 2019 from the following 270 

Landsat sensors: Thematic Mapper (TM) onboard Landsat 4 and 5, Enhanced Thematic Mapper-271 

plus (ETM+) onboard Landsat 7 and the Operational Land Imager (OLI) onboard Landsat 8 (23, 272 

37-39). Landsat 4 was launched in July 1982 and collected images from its TM sensor until 273 

December 1993. Landsat 5 was launched in March 1984 and collected images until November 274 

2011. Landsat 7 was launched in April 1999 and acquired images normally until May 2003 when 275 

the scan line corrector (SLC) failed (40). All Landsat 7 data acquired after the date of the SLC 276 

failure have been used in our analysis. Landsat 8 began operational imaging in April 2013.  277 

 278 

The Landsat archive coverage presents large geographical and temporal unevenness (37, 41). The 279 

main reason for the limited availability of images for some regions is that Landsat 4 and 5 had no 280 

onboard data recorders, and links with data relay satellites failed over time; cover was therefore 281 

often limited to the line of sight of receiving stations (39). Commercial management of the 282 

programme from 1985 to the early 1990s led to data acquisitions being acquired mostly when pre-283 

ordered (37). From 1999 onwards, the launch of Landsat 7 and its onboard data recording 284 

capabilities, associated with the continuation of the Landsat 5 acquisitions, considerably improved 285 

global coverage. 286 

 287 

In the tropical regions, Africa is particularly affected by the limited availability of image 288 

acquisitions, especially in the first part of the archive. From a total of around 1 370 860 Landsat 289 

scenes that were available for our study area, only 265 098 scenes were located in Africa (in 290 

comparison, 573 589 and 532 173 scenes were respectively available in South America and Asia). 291 
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The most critical area is located around the Gulf of Guinea, with an overall average number of valid 292 

observations (i.e. without clouds, hazes, sensor artefacts and geo-location issues) over the full 293 

archive (fig. S14) of fewer than 50 per location (pixel) and with the first valid observations starting 294 

mostly at the end of the 1990s (fig. S15). Small parts of Ecuador, Colombia, Salomon Islands and 295 

Papua New Guinea present a similar low number of total valid observations, often with an earlier 296 

first valid observation around the end of the 1980s. Apart from these regions, the first valid 297 

observation occurs mostly within periods 1982-1984, 1984-1986, or 1986-1988 for Latin America, 298 

Africa and Southeast Asia, respectively.  299 

 300 

The average number of annual valid observations (fig. S16) shows a stepped increase during the 301 

38-year period for the three continents, with two major jumps: in 1999 with the launch of Landsat 302 

7, and in 2013 with the launch of Landsat 8. There is also a clear drop in 2012 for Southeast Asia 303 

and Latin America with the decommissioning of Landsat 5 in November 2011, and a small drop in 304 

2003 as a consequence of the Landsat 7 SLC off issue. There are major differences between Africa 305 

and the two other continents: Africa has significantly fewer valid observations, in particular during 306 

the period 1982-1999, and a much larger increase in number of observations from 2013.  307 

The geographical unevenness of the first year of acquisition constrains the monitoring capability 308 

period. Our method accounts for this constraint notably by recording the effective duration of the 309 

archive at the pixel level (see next subsection). 310 

 311 

Data quality issues affecting the Landsat collection were addressed by excluding pixels where (i) 312 

detector artefacts occur (manifested as random speckle or striping), (ii) one or more spectral bands 313 

are missing (typically occurring at image edges) or (iii) scene geo-location is inaccurate. 314 

 315 

 316 
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Mapping method  317 

In order to map the area dynamics (extent and changes) of the TMF over a long period, we 318 

developed an expert system that exploits the multispectral and multitemporal attributes of the 319 

Landsat archive to identify the main change trajectories over the last 3 decades and uses ancillary 320 

information to identify sub-classes of forest conversion (see Supplementary Text on Ancillary 321 

data). The inference engine of our system is a procedural sequential decision tree, where the expert 322 

knowledge is represented in the form of rules. Techniques for big data exploration and information 323 

extraction, namely visual analytics (42) and evidential reasoning (43), were used similarly to a 324 

recent study dedicated to global surface water mapping (41). The advantages of these techniques 325 

for remotely sensed data analysis are presented in this previous study (41), notably for accounting 326 

for uncertainty in data, guiding and informing the expert’s decisions, and incorporating image 327 

interpretation expertise and multiple data sources. The expert system was developed and operated 328 

in the Google Earth Engine (GEE) geospatial cloud computing platform (22). 329 

 330 

The mapping method includes four main steps described hereafter: (i) single-date multi-spectral 331 

classification into three classes, (ii) analysis of trajectory of changes using the temporal information 332 

and production of a ‘transition’ map (with seven classes) (Figs. 1 and 2, figs. S2 to S7), (iii) 333 

identification of sub-classes of transition based on ancillary datasets (see Supplementary Text on 334 

Ancillary datasets) and visual interpretation, (iv) production of annual change maps (fig. S1).   335 

 336 

In the first step, each image of the Landsat archive was analysed on a single-date basis (through a 337 

multi-spectral classification), whereas previous large-scale studies used annual syntheses or intra-338 

annual statistics such as the mean and standard deviation of available Landsat observations (44-50). 339 

Classification of individual images is challenging but presents three main advantages: it allows (i) 340 

to capture the disturbance events that are visible only over a short period from space, such as 341 
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logging activities, (ii) to record the precise timing of the disturbances and the number of disruption 342 

observations, and (iii) to detect the disturbance at an early stage, i.e. even if the disturbance is 343 

starting at the end of the year, it is detected and counted as a disturbance for this year whereas other 344 

approaches notably based on composites will detect the disturbance with a delay of one year.  345 

A disruption observation is defined here as an absence of tree foliage cover within a 0.09 ha size 346 

Landsat pixel. The number of disruption observations constitutes a proxy of disturbance intensity. 347 

Each pixel within a Landsat image was initially assigned through single-date multi-spectral 348 

classification to one of three following classes: (i) potential moist forest cover, (ii) potential 349 

disruption, and (iii) invalid observation (cloud, cloud shadow, haze and sensor issue).  350 

 351 

The temporal sequence of classes (i) and (ii) was then used to determine the seven transition classes, 352 

described in the second step of the mapping approach. However, not all pixels could be 353 

unambiguously spectrally assigned to one of the three single-date classes because the multi-spectral 354 

cluster hulls of such classes are overlapping in the multidimensional feature-space. In cases of 355 

spectral confusion, evidential reasoning was used to guide class assignment by taking into 356 

consideration the temporal trajectory of single-date classifications, as spectral overlap between land 357 

cover types may occur only at specific periods of the year. For instance, pixels covered by 358 

deciduous forests, grassland or agriculture, may behave – from a spectral point of view – as 359 

potential moist forest cover during the humid seasons and as potential disruptions during the dry 360 

seasons, and, consequently, can be assigned to the other land cover transition class. Disturbed moist 361 

forests (degraded or deforested) are appearing as potential moist forest cover at the start of the 362 

archive and as potential disruption assignments later.  363 

 364 

For the three initial classes (potential moist forest cover, potential disruption, and invalid 365 

observation), multispectral clusters were defined first by establishing a spectral library capturing 366 
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the spectral signatures of the land cover types and atmosphere perturbations that are present over 367 

the pan-tropical belt and targeted for these three classes : (i) moist forest types, (ii) deciduous forest, 368 

logged areas, savannah, bare soil, irrigated and non-irrigated cropland, evergreen shrubland and 369 

water (for the potential disruption class) and (iii) clouds, haze, cloud shadows (for the invalid 370 

observations). A total sample of 38 326 sampled pixels belonging to 1 512 Landsat scenes (L5, L7 371 

and L8), were labelled through visual interpretation. The HSV (hue, saturation, value) 372 

transformation of the spectral bands - well adapted for satellite image analysis (41, 52) - were used 373 

to complement the spectral library. These components were computed using a standard 374 

transformation (52) for the following Landsat band combination: short-wave infrared (SWIR2), 375 

near infrared (NIR) and red. The stability of hue to the impacts of atmospheric effect is particularly 376 

desirable for identifying potential disruption in the humid tropics. The sensitivity of saturation and 377 

value to atmospheric variability is mainly used to detect invalid observations (haze). Value is 378 

particularly useful for identifying cloud shadows. The thermal infrared band (TIR) was relevant to 379 

detect invalid observations (clouds, haze) and bare soil, and the Normalized Difference Water Index 380 

(NDWI) to identify irrigated areas. The information held in the spectral library was analyzed 381 

through visual analytics to extract equations describing class cluster hulls in the 382 

multidimensional feature-space (fig. S17). An exploratory data analysis tool designed in a 383 

previous study (41) was used to support the interactive analysis.  384 

 385 

In the second step of the mapping approach, the temporal sequence of single-date classifications at 386 

pixel scale was analysed to first determine the initial extent of the TMF domain and then to identify 387 

the change trajectories from this initial forest extent (fig. S2). Long-term changes cannot be 388 

determined uniformly for the entire pan-tropical region because the observation record varies 389 

(see Data), e.g. the first year of observation (fig. S18) is c. 1982 for Brazil and c. 2000 along the 390 

Gulf of Guinea. We have addressed this geographic and temporal discontinuities of the Landsat 391 
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archive by determining at the pixel level (i) a reference initial period (baseline) for mapping the 392 

initial TMF extent and (ii) a monitoring period for detecting the changes. The data gaps at the 393 

beginning of the archive were tackled by requiring a minimum period of four years with a minimum 394 

of three valid observations per year or a minimum of five years with two valid observations per 395 

year from the first available valid observation. Hence, lower is the annual number of valid 396 

observations, higher is the length of the initial period. This minimizes the risk of inclusion of non-397 

forest cover types (such as agriculture) and deciduous forests in the baseline when there are few 398 

valid observations over a short period.  In addition, we have reduced the commission errors in our 399 

baseline by accounting for possible confounding with commodities, wetlands, bamboo, and 400 

deciduous forest (see Supplementary Text on ancillary datasets and specific tropical forest types). 401 

From our initial TMF extent, we identified seven main transition classes (fig. S2) which are defined 402 

thereafter. The first year of the monitoring period (that follows the initial period) is represented at 403 

fig. S18; it starts at the earliest in year 1987 (mostly for South-America) and, for very limited cases, 404 

at the latest in 2016 (e.g. Gabon). 405 

 406 

Although no ecosystem may be considered truly undisturbed, because some degree of human 407 

impact is present everywhere (54), we define the undisturbed moist forests (class 1) as tropical 408 

moist (evergreen or semi-evergreen) forest coverage without any disturbance (degradation or 409 

deforestation) observed over the Landsat historical record (see Section on the Study area and forest 410 

types). Our TMF baseline may include old forest regrowth (old secondary forests) or previously 411 

degraded forests forest as the Landsat observation period is too short to discriminate never-cut 412 

primary forest from second growth naturally recovered forest older than the observation period. 413 

This class includes two sub-classes of bamboo-dominated forest (class 1a) and undisturbed 414 

mangrove (class 1b). 415 
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A deforested land (class 2) is defined as a permanent conversion from moist forest cover to another 416 

land cover whereas a degraded forest (class 3) is defined as a moist forest cover where disturbances 417 

were observed over a short time period. Here we assumed that the duration of the disturbance (and 418 

consequently the period over which we detect the disturbance with satellite imagery) is a proxy of 419 

the disturbance impact, i.e. higher is the duration of the detected disturbance, higher is the impact 420 

on the forest, and higher is the risk to have a permanent conversion of the TMF. By considering 421 

short-term disturbances we include logging activities, fires and natural damaging events such as 422 

wind breaks and extreme dryness periods. Hence, we are getting closer to the most commonly 423 

accepted definition of the degradation (54) that considers a loss of productivity, a loss of 424 

biodiversity, unusual disturbances (droughts, blowdown), and a reduction of carbon storage.  425 

The threshold applied on the duration parameter used to separate degraded forests from deforested 426 

land is based on our knowledge of the impacts of human activities and of natural or human-induced 427 

events such as fires. We identified empirically two levels of degradation: (class 3a) degradation 428 

with short-duration impacts (observed within a 1-year maximum duration), which includes the 429 

majority of logging activities, natural events and light fires, and (class 3b) degradation with long-430 

duration impacts (between one and 2.5 years) which mainly corresponds to strong fires (burned 431 

forests). Most of the degradation (50%) are observed over less than six-month durations (fig. S19). 432 

All disturbance events for which the impacts were observed over more than 2.5 years (900 days) 433 

were considered as deforestation processes, with 68% of such deforestation events observed over 434 

more than five years. When a deforestation process is not followed by a regrowth period at least 435 

over the last 3 years, it is considered as a Deforested land. Deforested land are also characterized 436 

by the recurrence of disruptions, i.e. the ratio between the number of years with at least one 437 

disruption observation and the total number of years between the first and last disruption 438 

observations. This information allowed to discriminate deforestation without prior degradation 439 

from deforestation occurring after degradation, the second one having a lower recurrence due to the 440 
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period without any disruption between the degradation and deforestation phases (see 441 

Supplementary Text on annual change dataset). 442 

For the recent degradation and deforestation (class 4) that initiated in the last three years (after 443 

year 2016) and that cannot yet be attributed to a long-term conversion to a non-forest cover, owing 444 

to the limited historical period of observation, specific rules were applied. Within this class, we 445 

separated degradation from deforestation, by taking a duration of minimum 366 days for the years 446 

2017-2018 and a threshold of 10 disruptions for the last year (2019) to consider a deforested land.  447 

A forest regrowth (class 5) is a two-phase transition from moist forest to (i) deforested land and 448 

then (ii) vegetative regrowth. A minimum 3-years duration of permanent moist forest cover 449 

presence is needed to classify a pixel as forest regrowth (to avoid confusion with agriculture).  450 

The other land cover (class 6) includes savannah, deciduous forest, agriculture, evergreen 451 

shrubland and non-vegetated cover.  452 

Finally, the Vegetation regrowth (class 7) consists of a transition from other land cover to 453 

vegetation regrowth and includes two sub-classes of vegetation regrowth according to the age of 454 

regrowth (between 3 and 10 years, and between 10 and 20 years) and a transition class from water 455 

to vegetation regrowth. 456 

 457 

The third mapping step allowed to identify three sub-classes from the deforested land class. We 458 

geographically assigned deforestation to the conversion from TMF to tree plantations - mainly oil 459 

palm and rubber (class 2a), water surface (discriminating permanent and seasonal water)- mainly 460 

due to new dams (class 2b), and other land cover - agriculture, infrastructures, etc. (class 2c) using 461 

ancillary spatial datasets completed by visual interpretation of high-resolution (HR) imagery (see 462 

Supplementary Text on ancillary data). Finally, we have re-assigned disturbances when detected 463 

within two geographically specific tropical forest formations: (i) the bamboo dominated forest, and 464 
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(ii) the semi-deciduous transition tropical forest (Supplementary Text on specific tropical forest 465 

formations).  466 

 467 

Each disturbed pixel (degraded forest, deforested land, or forest regrowth) is characterized by the 468 

timing and intensity of the observed disruption events. The start and end dates of the disturbance 469 

allows identifying in particular the timing of creation of new roads or of logging activities and the 470 

age of forest regrowth or degraded forests. Three decadal periods have been used in the transition 471 

map to identify age sub-classes of degradation and forest regrowth: (i) before 2000, (ii) within 472 

2000-2009 and (iii) within 2010-2019. The number of annual disruption observations combined 473 

with the duration, can be used as a proxy for the disturbance intensity and impact level. 474 

 475 

In the last mapping step, we created a collection of 30 maps providing the spatial extent of the TMF 476 

and disturbance classes on a yearly basis, from 1990 to 2019, using dedicated decision rules (see 477 

Supplementary Text on the annual change dataset and thematic maps). These maps were used in 478 

our annual trend analysis -described in next subsection- to document the annual disturbances over 479 

the full period, with ten classes of transition for each annual statistic  (Figs. 3 and 4, figs. S1 and 480 

S11): (i) degradation that occurs before deforestation, (iii) short-duration degradation not followed 481 

by deforestation, (iv) long-duration degradation not followed by deforestation, (v) direct 482 

deforestation (without prior degradation) not followed by forest regrowth, (vi) direct deforestation 483 

followed by forest regrowth, (viii) deforestation after degradation followed by forest regrowth, 484 

(viii) deforestation after degradation not followed by regrowth, (ix) forest conversion to water 485 

bodies and (x) forest conversion to tree plantations. The associated metadata information on invalid 486 

observations within the forest domain and the proportion of invalid observations over the forest 487 

domain area were also documented. 488 

 489 
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In order to produce a more conservative map of undisturbed forests by excluding potential missed 490 

areas impacted by logging activities, we created a disturbance buffer zone using a threshold distance 491 

of 120 m around disturbed pixels. This distance corresponds to the average observed distance 492 

between two logging desks (landing) and is consistent with the distances used in previous studies 493 

for assessing intact forests (15). 494 

 495 

Trend analysis 496 

The areas of TMF and disturbance classes are reported yearly and at 5-year intervals between 1990 497 

and 2019, by country, subregion and continent (Tables 1, 2, and 3, Figs. 3 and 4 and fig. S11, 498 

Supplementary Text on Trend analysis), using the country limits from the Global Administrative 499 

Unit Layers dataset from the FAO (53). Area measurements were also computed for 1˚ × 1˚ cells 500 

of a systematic latitude–longitude grid in order to delineate hotspot areas of deforestation and 501 

degradation for the three decades (Fig. 5). For the three most recent years of the considered period 502 

(i.e. for 2017-2019), the proportions of disturbance types (degradation followed by deforestation, 503 

degradation not followed by deforestation and direct deforestation) were calibrated with historical 504 

proportions (2005-2014) of the three types of disturbances. 505 

For countries with moist forest areas larger than 5 million ha in 1990 (i.e. for 32 countries), and for 506 

all sub regions, we analyzed the temporal dynamics of annual changes from 1990 to 2019 (fig. S11 507 

and Supplementary Text on trend analysis). 508 

 509 

Validation 510 

The performance of our classifier was assessed in term of errors of omission and commission at the 511 

pixel scale and the uncertainties in the area estimates derived from the transition map were 512 

quantified (see Supplementary Text on the validation). A stratified systematic sampling scheme 513 

was used to create a reference dataset of 5 250 sample plots of 3 × 3 pixels (0.81 ha plot size) (fig. 514 
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S8). For each sample plot, Landsat images at several dates were visually interpreted, together with 515 

the most recent HR images available from the Digital Globe or Bing collections, to create the 516 

reference dataset. The dates of the Landsat images to be interpreted were selected to optimize the 517 

assessment of the performance of our classifier as follows (fig. S9) ; (i) at least one random date 518 

within three successive key periods to verify the consistency of the temporal sequencing and the 519 

classifier performance across the main sensors (L5, L7 and L8), (ii) for the disturbed classes, the 520 

two dates corresponding to the first and last disruption observations were selected to assess the 521 

commission errors, and (iii) for the undisturbed forest class, at least one random date during the 522 

Global Forest Change (GFC) loss year (if existing) to assess omission errors. It resulted into the 523 

interpretation of two to four Landsat images for each sample plot, with a total of 14 295 images. 524 

 525 

The user, producer and overall accuracies, the confidence intervals of the estimated accuracies and 526 

the corrected estimates of undisturbed and disturbed forest areas with a 95% confidence interval on 527 

this estimation were computed in accordance with latest statistical good practices (26). The 528 

performance of our disturbance detection results into 9.4% omissions, 8.1% false detections and 529 

91.4% overall accuracy (tables S2 and S3). In addition, the uncertainties of area estimates (forest 530 

cover and changes) have been assessed from a sample of 5119 reference plots.  This accuracy 531 

assessment shows that a direct area measurement from the forest cover maps underestimates the 532 

forest area changes by 11.8% (representing 38.4 million ha, with 15 million ha confidence interval 533 

at 95%) (tables S4 and S5). 534 

 535 

Comparison with the Global Forest Change (GFC) dataset 536 

We compared our transition classes with the GFC dataset (24) for the TMF domain (undisturbed 537 

and degraded forest) in 2000 and over the period 2001-2019, which is the common period between 538 

the two products.  539 
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We synthesized the GFC multiannual product into four classes of forest cover changes from the 540 

combination of the GFC annual layers of tree cover loss and gain over the period 2001-2019: (i) 541 

unchanged (no loss, no gain), (ii) at least one loss but no gain, (iii) at least one gain but no loss and 542 

(iv) at least one loss and one gain.  A new version of the transition map with eight classes was 543 

created (through the combination with annual maps) to characterize the disturbances that occurred 544 

between 2001 and 2019: (i) undisturbed forest (at the end of 2019), (ii) old degradation or regrowth 545 

(initiated before 2001), (iii) old deforestation (before 2001), (iv) degradation initiated between 2001 546 

and 2019, (v) direct deforestation initiated between 2001 and 2019, (vi) deforestation that follows 547 

a degradation and initiated between 2001 and 2019, (vii)  regrowth initiated from 2001 (viii) other 548 

land cover. 549 

A matrix of correspondences between the synthesized GFC map (four classes) and our reclassified 550 

transition map (eight classes) was then produced for each continent and for the pan-tropical region, 551 

where area estimates are compared (table S1). This comparison shows that our annual change 552 

dataset depicts 138.9 million ha of forest disturbances along the periods 2001-2019 that are not 553 

depicted in the GFC map (representing 59% of the total area of our disturbances). This finding is 554 

corroborated by previous studies (33, 31). In addition, 17.6 million ha and 3.2 million ha are 555 

depicted as a GFC loss whereas it is classified as old deforestation and degradation respectively 556 

(before 2001) in our TMF dataset. Amongst the disturbances that are not depicted by GFC, the 557 

highest disagreements concern the gradual processes such the degradation, the forest regrowth 558 

classes, and the deforestation that follows a degradation for which 75%, 67% and 59% respectively 559 

of our depicted areas are missing on the GFC map, whereas our direct deforestation class shows a 560 

good correspondence with the GFC map (60%). The disagreement between our dataset and the GFC 561 

map is even higher for the changes within the mangroves with 83% difference. Mangroves are a 562 

key ecosystem within the TMF. We also observed a lower agreement for the disturbance classes in 563 

Africa (38% of our disturbances are depicted by GFC) compared to other continents (40.9% and 564 
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43.3% for Asia and Latin America respectively). A higher underestimation of GFC loss in Africa 565 

compared to other continents has also been observed by Tyukavina et al. (31) using a sample-based 566 

analysis. 567 

 568 

We observe higher discrepancies between GFC and our study for shorter and lower intensity events, 569 

i.e. (i) the average duration for the disturbances detected only by our approach is 6.7 years compared 570 

to 9.4 years for the disturbances captured by both approaches, and (ii) the average intensity (or total 571 

number of disruptions detected for each disturbance) for the disturbances detected only by our 572 

approach is 9.9 compared to 32.6 for the disturbances captured by both approaches. 573 

 574 

The evolution of the discrepancies over time shows major differences between the period (2001-575 

2010) where our annual change dataset depicts 61.4% more deforested areas, and the last decade 576 

(2010-2019) where GFC losses include all our deforestation areas and 5.7% of our degradation 577 

areas (Table 4 and Fig. 4). This change in the last decade has also been observed in another study 578 

(56) and can be explained (i) by the differences of processing applied by GFC team before and after 579 

the year 2011 (https://earthenginepartners.appspot.com/science-2013-global-580 

forest/download_v1.3.html), and (ii) by the inclusion of burned areas in the GFC loss (particularly 581 

for the dry period of 2015-2016) that are mainly classified as degradation in our TMF dataset.  582 

 583 

Projection of future forest cover  584 

Temporal projections of future forest cover are provided for (i) undisturbed forest area and (ii) total 585 

forest area (undisturbed and degraded forests) per country (fig. S12. and table S8). We considered 586 

that the annual disturbed areas followed an independent log-normal distribution for each country, 587 

and we used a modified version of the Cox method to estimate the mean and the 95% confidence 588 

interval (58) of the distribution. We used these estimates on the last 10 years (period 2010-2019) to 589 
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project disturbances over the period 2020-2050 under a business-as-usual scenario. Several metrics, 590 

with their uncertainties, have been produced: (i) forest area at the end of 2050, (ii) percentage of 591 

remaining forest area at the end of 2050 compared with forest area at the end of 2019 and (iii) year 592 

corresponding to full disappearance of forest cover.  593 

 594 

Known limitations and future improvements 595 

Disturbances that affect less than the full pixel area (0.09 ha size), e.g. the removal of a single tree, 596 

are generally not included in our results because the impact of the spectral values of the pixel are 597 

not strong enough to be detected. However, in specific cases, where the impact on the forest canopy 598 

cover modifies significantly the spectral values within a single pixel, e.g. the opening of a narrow 599 

logging road (< 10 m wide) or the removal of several big trees, our approach can detect such 600 

disturbances.  601 

 602 

We have addressed the geographic and temporal discontinuities of the Landsat archive (see Data 603 

and Mapping method) by determining at the pixel level (i) an initial period (baseline) of minimum 604 

four years (increasing when the annual number of valid observations is low) for mapping the initial 605 

TMF extent and (ii) a monitoring period for detecting the changes. This minimizes the risk of 606 

inclusion of non-forest cover types (such as agriculture) and deciduous forests in the baseline when 607 

there are few valid observations over a short period. This risk has been under-estimated by previous 608 

studies that did not use a long period of analysis and did not accounted for the number of valid 609 

observations. 610 

 611 

The accuracy of the disturbance detections has been assessed in the validation exercise (see 612 

Validation section and Supplementary Text on the validation). The assignment of the disturbance 613 

types at any location improves as the number of valid observations increases. The meta-614 
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information documents (i) the annual number of valid observations (ii) the first year of valid 615 

observation (fig. S15) and (iii) the start year of the monitoring period (fig. S18) at each pixel 616 

location. This meta-information (in particular the number of valid observations) can be 617 

considered as a proxy measure of confidence. Hence our estimates of changes in the regions 618 

where the total number of valid observations is particularly low and/or the start year of the 619 

monitoring period is late (figs. S14, S15, S18ra), e.g. Gabon, Salomon Islands, La Reunion, 620 

should be considered with lower confidence. However, considering the geographic completeness 621 

of Landsat-8 coverage after year 2013 there is high confidence for the contemporary reported 622 

estimates. 623 

 624 

Short-duration events are likely to be underestimated for regions with geographic and temporal 625 

discontinuities in the Landsat archive and/or with gaps caused by persistent cloud cover. This is the 626 

case of Africa which is poorly covered by Landsat acquisitions before year 2000 (fig. S16). In order 627 

to provide a more conservative estimate of the remaining undisturbed forested areas, we also 628 

produced another estimate of undisturbed forested areas using a buffer zone with a threshold 629 

distance of 120 m from the detected disturbed pixels to exclude the potentially edge-affected forest 630 

areas. Further contextual spatial analysis would be needed to better estimate the characteristics of 631 

fragmented areas.  632 

 633 

For the first time at pan tropical scale, a fine spatial resolution and annual frequency, detailed 634 

information on the historical forest area changes within the plantation concessions of oil palm and 635 

rubber are provided through to the combination of ancillary information and dedicated visual 636 

interpretation (see Supplementary Text on ancillary datasets). Although some confusion between 637 

forests and old plantations may remain (in particular for plantations that are not included in the 638 

ancillary database of concessions or that cannot be easily identified visually on satellite imagery 639 
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from a regular geometrical shape), such errors are expected to be limited due to the consideration 640 

of (i) a minimum duration for the initial period and (ii) a long observation period. Classes of tree 641 

plantations do not include all commodities such as coffee, tea and coconut, that are detected as 642 

deforested land (if initially TMF and converted in commodity during the monitoring period) or 643 

other land cover (if the concession was already established during the initial period).  644 

 645 

Some isolated commission errors may remain in the bamboo-dominated TMF, wetlands and semi-646 

deciduous forests as reference data were available on restricted areas (Supplementary Text on 647 

specific tropical forest types). These will be continuously improved as the reference information 648 

layers improve and based on the feedback of users and national authorities. 649 

 650 

The L7 SLC-off issue may introduce some spatial inconsistencies owing to a higher number of 651 

valid observations outside the SLC-off stripes which allows more disruptions to be captured and 652 

leads – potentially - to a different transition class.  653 

 654 

Efforts have been done to classify disturbances based on their characteristics (timing, recurrence 655 

and sequence) in order to fit to the land cover use. However, all the metrics used in this study are 656 

made freely available to the end-user to possibly apply different decision rules that would better fit 657 

to the specific user needs and constraints, e.g. threshold applied to discriminate deforestation from 658 

degradation may be different according to the selected definition of the degradation.  659 

 660 

This approach can be automatically applied to future Landsat data (from 2020) and is intended 661 

to be adapted to Sentinel 2 data (available since 2015) towards a monitoring of tropical moist 662 

forests with higher temporal frequency and finer spatial resolution.  663 

 664 
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SUPPLEMENTARY MATERIALS 665 

This file contains Supplementary Text on ancillary data, on specific tropical forest formations, on 666 

the transition map, on the annual change dataset, on the validation, on the trend analysis, 667 

supplementary references, supplementary figures and supplementary tables. 668 
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FIGURES AND TABLES 887 

Fig. 1. Map of tropical moist forests remaining in January 2020 and disturbances observed during 888 

the period 1990-2019. See legend in Fig. 2. 889 
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Fig. 2. Examples of patterns of forest cover disturbances (deforestation and degradation) during the 896 

period 1990-2019 : (A) Remaining Mangroves and the related changes in Guinea-Bissau (14.9˚W, 897 

11.1˚N), (B) Fires in Mato-Grosso province of Brazil (53.8˚W, 13˚S), (C) Recent deforestation in 898 

Colombia (74.4˚W, 0.7˚N), (D) Logging in Mato-Grosso (54.5˚W, 12˚S), (E) Deforestation and 899 

degradation caused by the railway in Cameroon (13.4˚E, 5.8˚N) (F) Recent selective logging in 900 

Ouesso region of Republic of Congo (15.7˚E, 1.4˚N), (G) Deforestation for the creation of a dam 901 

in Malaysia (113.8˚E, 2.4˚S), (H) Massive deforestation in Cambodia (105.6˚E, 12.7˚N), and (I) 902 

Commodities in the Riau province of Indonesia (102˚E, 0.4˚N). The size of each box is 20 km × 20 903 

km. 904 

 905 
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Fig. 3 Evolution of annual deforestation and degradation (A) over the last 25 years in South 906 

America, and (B) in continental South-East Asia regions, and (C) over the last 15 years in all 907 

regions. 908 

 909 

 910 

 911 
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 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 
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Fig. 4 Dynamics of annual disturbed areas from 2001 to 2019 for (A) the Amazônia Legal region 927 

of Brazil within the primary forest extent in 2000 from INPE and (B) Indonesia using the entire 928 

TMF extent (undisturbed and degraded) in 2000. (x-axis in years and y-axis in million ha) in 929 

comparison with GFC loss and the PRODES data for the Amazônia Legal region of Brazil. * The 930 

average proportions of disturbance types within total disturbances over the period 2005-2014 is 931 

used to distribute the disturbance types for years 2017 to 2019.  932 

 933 

 934 
935 
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Fig. 5 Evolution of hotspots of deforestation (A) and degradation (B) during the last three decades 936 

(total deforested or degraded area per box of 1˚ latitude × 1˚ longitude size – scale in million ha). 937 

(A)  938 

(B)  939 
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Table 1 Areas (in million ha) of (a) undisturbed tropical moist forests (TMF) and (b) Undisturbed 940 

and degraded TMF for years 1990, 1995, 2000, 2005, 2010, 2015 and 2020 (on first January) by 941 

sub-region and continent, and relative decline (in %) over intervals of 30 years (1990-2020), and 942 

10 years (1990-2000, 2000-20100, 2010-2020). The values appearing in grey color indicate values 943 

derived from an average percentage of invalid pixel observations over the baseline TMF domain 944 

higher than 40%. 945 

(a)   946 

 947 

(b)  948 

 949 

 950 

  951 

Sub-region 1990 1995 2000 2005 2010 2015 2020 [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 34.6 34.1 32.8 27.4 23.9 20.6 15.6 55.0 5.0 27.1 35.0

Central-Africa 223.1 221.5 216.1 207.2 201.1 193.7 184.7 17.2 3.1 6.9 8.2

South-East Africa 15.7 15.0 12.5 10.1 8.9 7.6 6.4 59.2 20.7 28.6 27.9

Central-America 34.5 32.3 27.4 24.1 21.7 19.6 16.2 53.0 20.8 20.6 25.3

South-America 670.6 655.4 628.8 600.9 583.2 568.9 548.2 18.2 6.2 7.3 6.0

Continental SE Asia 73.3 67.2 57.7 50.2 44.4 39.9 34.2 53.3 21.2 23.2 22.9

Insular SE Asia 237.9 229.5 207.8 192.9 180.8 170.5 159.1 33.1 12.6 13.0 12.0

Continent 1990 1995 2000 2005 2010 2015 2020 [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 273.4 270.6 261.4 244.7 234.0 221.9 206.7 24.4 4.4 10.5 11.7

Latin-America 705.1 687.7 656.1 625.0 604.9 588.5 564.4 19.9 6.9 7.8 6.7

Asia-Oceania 311.1 296.7 265.6 243.2 225.2 210.4 193.3 37.9 14.6 15.2 14.2

Total 1267.1 1232.4 1160.6 1090.4 1041.5 998.2 964.4 23.9 8.4 10.3 7.4

Decline (% of the forest)Area of Undisturbed TMF on 1st January (Mha)

Sub-region 1990 1995 2000 2005 2010 2015 2020 [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 34.6 34.3 33.3 29.8 27.4 25.1 22.1 36.0 3.6 17.8 19.3

Central-Africa 223.1 222.3 218.6 212.7 208.9 204.4 199.9 10.4 2.0 4.4 4.3

South-East Africa 15.7 15.2 12.9 11.0 10.1 9.2 8.5 45.9 17.8 21.8 15.9

Central-America 34.5 32.8 29.0 26.8 25.3 24.0 22.1 35.9 16.0 12.8 12.5

South-America 670.6 657.7 635.5 613.7 601.0 592.4 581.6 13.3 5.2 5.4 3.2

Continental SE Asia 73.3 69.1 61.3 55.7 52.0 49.2 46.4 36.6 16.3 15.2 10.6

Insular SE Asia 237.9 232.6 218.4 208.9 201.2 194.9 190.2 20.0 8.2 7.9 5.5

Continent 1990 1995 2000 2005 2010 2015 2020 [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 273.4 271.7 264.8 253.5 246.4 238.7 227.7 16.7 3.1 7.0 7.6

Latin-America 705.1 690.5 664.5 640.5 626.3 616.4 599.2 15.0 5.8 5.7 4.3

Asia-Oceania 311.1 301.7 279.7 264.5 253.2 244.1 232.8 25.2 10.1 9.5 8.1

Total 1267.1 1241.4 1186.5 1136.0 1103.4 1076.6 1059.6 16.4 6.4 7.0 4.0

Area of TMF (undisturbed and degraded) at the end of the year (Mha) Decline (% of the forest)
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Table 2. Average annual losses of undisturbed tropical moist forest areas (in million ha) between 952 

1990 and 2020 over intervals of 5 year, 30 year (1990-2020), 20 year (2000-2020), and 10 years 953 

(1990-2000,2000-2010, 2010-2020) by sub-region and continent: (a) annual losses due to 954 

deforestation and degradation, (b) annual losses due to deforestation, (c) annual losses due to 955 

degradation, (d) annual losses due to direct deforestation, (e) annual degradation before 956 

deforestation, (f) annual losses due to deforestation followed by regrowth  and (g) average 957 

percentage of invalid observations over the baseline TMF domain. The values appearing in grey 958 

color indicate values derived from an average percentage of invalid observations higher than 40%. 959 

a) total annual loss due to deforestation and degradation 960 

 961 

b) annual loss due to deforestation (with or without prior degradation) 962 

 963 

 964 

 965 

 966 

Sub-region [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 0.10 0.24 1.08 0.70 0.67 1.01 0.6 0.2 0.9 0.8

Central-Africa 0.33 1.07 1.79 1.22 1.49 1.79 1.3 0.7 1.5 1.5

South-East Africa 0.13 0.52 0.47 0.24 0.26 0.24 0.3 0.3 0.4 0.3

Central-America 0.45 0.99 0.66 0.47 0.43 0.67 0.6 0.7 0.6 0.6

South-America 3.03 5.33 5.56 3.56 2.85 4.14 4.1 4.2 4.6 4.1

Continental SE Asia 1.21 1.90 1.50 1.17 0.89 1.14 1.3 1.6 1.3 1.2

Insular SE Asia 1.68 4.32 2.98 2.43 2.07 2.28 2.6 3.0 2.7 2.5

Continent [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 0.56 1.82 3.34 2.15 2.42 3.04 2.2 1.2 2.7 2.6

Latin-America 3.48 6.32 6.22 4.03 3.27 4.81 4.7 4.9 5.1 4.8

Asia-Oceania 2.89 6.22 4.48 3.60 2.96 3.42 3.9 4.6 4.0 3.7

Total 6.93 14.37 14.04 9.78 8.66 11.27 10.8 10.6 11.9 11.1

Annual loss of Undisturbed TMF areas (Mha)

Sub-region [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 0.06 0.19 0.71 0.48 0.45 0.60 0.4 0.1 0.6 0.5

Central-Africa 0.17 0.74 1.18 0.76 0.90 0.91 0.8 0.5 1.0 0.9

South-East Africa 0.10 0.45 0.38 0.18 0.18 0.14 0.2 0.3 0.3 0.2

Central-America 0.34 0.76 0.45 0.29 0.26 0.37 0.4 0.6 0.4 0.3

South-America 2.57 4.44 4.35 2.54 1.73 2.16 3.0 3.5 3.4 1.9

Continental SE Asia 0.84 1.55 1.13 0.74 0.56 0.54 0.9 1.2 0.9 0.6

Insular SE Asia 1.05 2.83 1.91 1.53 1.27 0.94 1.6 1.9 1.7 1.1

Continent [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 0.33 1.38 2.26 1.42 1.54 1.65 1.43 0.86 1.84 1.59

Latin-America 2.91 5.21 4.80 2.83 1.99 2.53 3.38 4.06 3.82 2.26

Asia-Oceania 1.89 4.38 3.04 2.27 1.83 1.48 2.48 3.14 2.65 1.65

Total 5.14 10.97 10.10 6.52 5.35 5.66 7.29 8.06 8.31 5.51

Total deforestation on an annual basis by period (Mha)
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c) annual loss due to degradation (followed or not by deforestation) 967 

 968 

d) annual loss due to direct deforestation (without prior degradation) 969 

 970 

e) annual degradation before deforestation 971 

 972 

 973 

Sub-region [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 0.08 0.16 0.87 0.50 0.35 0.61 0.4 0.1 0.7 0.5

Central-Africa 0.28 0.83 1.40 0.91 0.92 1.24 0.9 0.6 1.2 1.1

South-East Africa 0.09 0.27 0.28 0.14 0.13 0.13 0.2 0.2 0.2 0.1

Central-America 0.29 0.64 0.49 0.34 0.27 0.45 0.4 0.5 0.4 0.4

South-America 1.25 2.29 2.61 1.83 1.59 2.54 2.0 1.8 2.2 2.1

Continental SE Asia 0.88 1.23 1.03 0.81 0.49 0.78 0.9 1.1 0.9 0.6

Insular SE Asia 1.16 2.80 1.98 1.39 1.03 1.65 1.7 2.0 1.7 1.3

Continent [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 0.45 1.26 2.56 1.55 1.40 1.98 1.53 0.86 2.05 1.69

Latin-America 1.54 2.93 3.10 2.16 1.85 2.99 2.43 2.24 2.63 2.42

Asia-Oceania 2.04 4.03 3.00 2.21 1.51 2.43 2.54 3.04 2.61 1.97

Total 4.03 8.23 8.66 5.92 4.77 7.40 6.50 6.13 7.29 6.09

Total degradation on an annual basis by period (Mha)

Sub-region [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 0.02 0.08 0.21 0.19 0.32 0.40 0.2 0.0 0.2 0.4

Central-Africa 0.05 0.24 0.38 0.31 0.57 0.56 0.4 0.1 0.3 0.6

South-East Africa 0.05 0.24 0.19 0.10 0.13 0.10 0.1 0.1 0.1 0.1

Central-America 0.16 0.34 0.17 0.13 0.16 0.22 0.2 0.2 0.2 0.2

South-America 1.78 3.05 2.95 1.73 1.26 1.61 2.1 2.4 2.3 1.4

Continental SE Asia 0.33 0.66 0.48 0.36 0.41 0.36 0.4 0.5 0.4 0.4

Insular SE Asia 0.52 1.53 1.00 1.03 1.04 0.62 1.0 1.0 1.0 0.8

Continent [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 0.11 0.56 0.78 0.60 1.02 1.06 0.69 0.34 0.69 1.04

Latin-America 1.94 3.39 3.12 1.86 1.42 1.82 2.26 2.66 2.49 1.62

Asia-Oceania 0.85 2.19 1.48 1.39 1.45 0.99 1.39 1.52 1.44 1.22

Total 2.90 6.14 5.38 3.86 3.89 3.87 4.34 4.52 4.62 3.88

Annual direct deforestation by period (Mha)

Sub-region [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 0.04 0.11 0.50 0.28 0.14 0.20 0.2 0.1 0.4 0.2

Central-Africa 0.12 0.50 0.79 0.45 0.33 0.35 0.4 0.3 0.6 0.3

South-East Africa 0.06 0.21 0.19 0.08 0.05 0.04 0.1 0.1 0.1 0.0

Central-America 0.18 0.42 0.28 0.16 0.10 0.16 0.2 0.3 0.2 0.1

South-America 0.79 1.40 1.40 0.81 0.47 0.55 0.9 1.1 1.1 0.5

Continental SE Asia 0.51 0.89 0.65 0.38 0.15 0.18 0.5 0.7 0.5 0.2

Insular SE Asia 0.53 1.31 0.91 0.50 0.23 0.31 0.6 0.9 0.7 0.3

Continent [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 0.22 0.82 1.48 0.82 0.52 0.59 0.74 0.52 1.15 0.55

Latin-America 0.98 1.82 1.68 0.97 0.57 0.71 1.12 1.40 1.33 0.64

Asia-Oceania 1.05 2.19 1.56 0.88 0.38 0.49 1.09 1.62 1.22 0.44

Total 2.24 4.83 4.72 2.66 1.47 1.79 2.95 3.54 3.69 1.63

Annual degradation before deforestation by period (Mha)
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f) annual deforestation followed by a regrowth  974 

 975 

g) average percentage of invalid observations over the TMF domain per period and per year 976 

   977 

  978 

 979 

Sub-region [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

West-Africa 0.00 0.00 0.01 0.04 0.06 0.03 0.0 0.0 0.0 0.0

Central-Africa 0.02 0.04 0.07 0.10 0.13 0.06 0.1 0.0 0.1 0.1

South-East Africa 0.00 0.01 0.02 0.03 0.03 0.01 0.0 0.0 0.0 0.0

Central-America 0.05 0.09 0.07 0.07 0.05 0.02 0.1 0.1 0.1 0.0

South-America 0.21 0.40 0.50 0.49 0.37 0.20 0.4 0.3 0.5 0.3

Continental SE Asia 0.10 0.20 0.24 0.23 0.14 0.06 0.2 0.2 0.2 0.1

Insular SE Asia 0.11 0.33 0.44 0.42 0.30 0.15 0.3 0.2 0.4 0.2

Continent [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[ [1990-2020[ [1990-2000[ [2000-2010[ [2010-2020[

Africa 0.02 0.06 0.10 0.17 0.21 0.10 0.11 0.04 0.13 0.15

Latin-America 0.26 0.48 0.58 0.56 0.43 0.22 0.42 0.37 0.57 0.32

Asia-Oceania 0.21 0.53 0.68 0.65 0.44 0.21 0.45 0.37 0.66 0.32

Total 0.50 1.06 1.36 1.37 1.08 0.53 0.98 0.78 1.37 0.80

Total deforestation followed by regrowth on an annual basis by period (Mha)

Sub-region [1982-1990[ [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[

West-Africa 98.1 87.1 82.5 40.0 2.8 0.4 0.0

Central-Africa 99.4 94.7 80.8 37.2 6.7 2.9 0.4

South-East Africa 97.9 80.8 20.7 3.9 1.3 0.8 0.1

Central-America 50.1 12.4 4.3 1.2 0.4 0.1 0.0

South-America 30.5 1.2 0.6 0.2 0.0 0.0 0.0

Continental SE Asia 54.5 14.6 1.3 0.4 0.0 0.0 0.0

Insular SE Asia 34.3 16.3 4.2 0.8 0.1 0.1 0.0

Continent [1982-1990[ [1990-1995[ [1995-2000[ [2000-2005[ [2005-2010[ [2010-2015[ [2015-2020[

Africa 99.1 92.9 77.6 35.7 5.9 2.4 0.3

Latin-America 31.3 1.6 0.8 0.2 0.1 0.0 0.0

Asia-Oceania 29.5 12.0 3.7 1.3 0.3 0.2 0.0

Total 21.2 31.9 23.1 10.1 2.3 0.8 0.1

Average % of Invalid observations (over the total forest domain, per period)

Sub-region 1982 1990 1995 2000 2005 2010 2015 2019

West-Africa 100.0 90.8 84.3 71.8 5.9 0.7 0.2 0.0

Central-Africa 100.0 97.7 87.6 67.8 10.2 3.7 1.9 0.0

South-East Africa 100.0 92.1 41.5 8.4 1.5 1.0 0.5 0.0

Central-America 69.4 17.0 5.8 1.8 0.7 0.2 0.0 0.0

South-America 55.6 1.7 0.8 0.3 0.1 0.0 0.0 0.0

Continental SE Asia 55.2 49.1 2.0 1.0 0.0 0.0 0.0 0.0

Insular SE Asia 34.6 31.2 6.5 1.9 0.2 0.1 0.0 0.0

Continent 1982 1990 1995 2000 2005 2010 2015 2019

Africa 100.0 93.5 71.2 49.3 5.9 1.8 0.9 0.0

Latin-America 62.5 9.4 3.3 1.0 0.4 0.1 0.0 0.0

Asia-Oceania 44.9 40.2 4.3 1.4 0.1 0.1 0.0 0.0

Total 69.1 47.7 26.2 17.3 2.1 0.7 0.3 0.0

Average % of Invalid observations (over the total forest domain, per year)
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Table 3. Total areas and proportions of tropical moist forest disturbances (deforestation without 980 

regrowth, regrowth after deforestation, forest degradation) and reforestation areas (initially other 981 

land cover) over the period 1990-2020 for each sub-region and continent (areas in million ha and 982 

proportions in percentage).  983 

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

Sub-region Deforestation Regrowth Degradation Total Deforestation Regrowth Degradation Deforestation Regrowth Degradation Total
Reforestation  

(from other LC)

West-Africa 11.8 0.7 6.5 19.0 61.9 3.7 34.5 34.0 2.0 18.9 55.0 0.4

Central-Africa 21.2 2.1 15.1 38.4 55.2 5.4 39.4 9.5 0.9 6.8 17.2 1.1

South-East Africa 6.7 0.5 2.1 9.3 71.9 5.7 22.4 42.5 3.4 13.3 59.2 0.2

Central-America 10.6 1.8 5.9 18.3 58.0 9.7 32.3 30.7 5.1 17.1 53.0 0.7

South-America 78.1 10.9 33.4 122.4 63.8 8.9 27.3 11.6 1.6 5.0 18.2 4.0

Continental SE Asia 22.0 4.9 12.2 39.1 56.2 12.4 31.4 30.0 6.6 16.7 53.3 2.0

Insular SE Asia 38.9 8.7 31.1 78.8 49.4 11.1 39.5 16.4 3.7 13.1 33.1 1.6

Continent Deforestation Regrowth Degradation Total Deforestation Regrowth Degradation Deforestation Regrowth Degradation Total
Reforestation  

(from other LC)

Africa 39.6 3.3 23.8 66.7 59.4 4.9 35.6 14.5 1.2 8.7 24.4 1.6

Latin-America 88.7 12.6 39.3 140.7 63.1 9.0 27.9 12.6 1.8 5.6 19.9 4.7

Asia-Oceania 60.9 13.6 43.4 117.8 51.7 11.5 36.8 19.6 4.4 13.9 37.9 3.6

Total 189.2 29.5 106.5 325.2 58.2 9.1 32.7 14.9 2.3 8.4 25.7 10.0

Disturbed areas (Mha) % of Tot disturbances % of Undisturbed Forest in 1990
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Table 4. Comparison of estimates of annual deforested areas (in million ha / year) from previous 1000 

studies and our study, over the tropical belt, over the three continents and Brazil. 1001 

 1002 

  1003 

Tyukavina 
et al. 2015

Keenan et al. 
2015

PRODES-
INPE

Whole TMF 
(undisturbed 

and 
degraded)

Primary 
forest 
from 
INPE

Natural 
forests *

All tropical 
forests                             

(evergreen & 
deciduous)

Primary 
forest

Tropical 
moist 
forest

TMF 
excluding 
the tree 

plantations

Primary 
forest 
from 
INPE

2001-2010 4.67 7.24 7.72

2001-2012 4.80 6.5 + 0.7 7.19 6.44

2001-2015 5.07 6.66 6.95

2010-2019 6.87 5.51

2001-2019 5.79 6.66

2001-2012 0.73 1.21 + 0.4 1.60 1.57

2001-2019 1.28 1.64

2001-2012 2.19 3.7 + 0.5 3.25 3.19

2001-2019 2.41 2.93

2001-2012 1.89 1.6 + 0.4 2.34 1.67

2001-2019 2.10 2.09

2001-2010 1.61 1.35 1.65 2.55 1.57

2001-2012 1.54 1.26 2.1 + 0.3 1.47 2.32 2.27 1.42

2010-2019 1.64 1.34 0.67 1.63 1.04

2001-2019 1.64 1.35 1.19 2.10 1.31

This Study

Pan-tropical 
region

Africa

Latin America

Asia - Oceania

Source

Brazil

Forest extent
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