
flgen generate algorithms386

Algorithm 1: generateLandscape
Input:

Patch area distributions for N landscapes classes: P = {P1, ..., PN}
Terrain: T
Terrain dependency: td ∈ [0, 1]
Minimum distance between two patches of the same class: db > 0
Maximum number of trials for patch generation: mp > 0
Maximum number of trials for landscape generation: ml > 0

Output: A raster L with N landscape classes satisfying P
nl = 0 ; // landscape generation trials counter
L = raster with all cells initialized to -1 ; // output raster
B = {B1, ..., BN} = {∅, ..., ∅} ; // buffer cells for each class
hasFailed = false ;
while nl < ml do

for i ∈ [1, N ] do
for j ∈ [1,NPi] do

np = 0 ; // patch generation trials counter
pj = ∅ ; // patch cells
while np < mp ∧ pj == ∅ do

pj = generatePatch(i, L,Bi,AREAi
j , td, db) ; // generate patch

np = np + 1 ;
end
if pj == ∅ then

hasFailed = true ;
break ; // break the loop if patch generation failed

end
Lx = i for all x ∈ pj ; // write to output matrix

end
if hasFailed == true then

break
end
if hasFailed == false then

return L ; // generation was successful
end
nl = nl + 1;

end
return ∅ ; // generation has failed

22



Algorithm 2: generatePatch
Input:

Class index: i Landscape raster: L
Class buffer cells: Bi

Patch area: AREAi
j

Terrain dependency: td ∈ [0, 1]
Minimum distance between two patches of the same class: db > 0

Output: Patch cells if generation was successful, else empty set
p = ∅ ;
current = randomElement({c ∈ L | Lc = −1 ∧ c /∈ Bi}) ;
p = p ∪ {current} ;
n = 1 ; // current patch area

while n < AREAi
j do

adj =
�

c∈p adjacentCells(c) ; // retrieve adjacent cells

available = {c ∈ adj | Lc = −1 ∧ c /∈ Bi} ; // only retain available ones
if available == ∅ then

return ∅ ; // generation has failed
end
next = randomElement(filter(available, T, td)) ; // get next patch cell
n = n+ 1;

end
patchBuffer = {c ∈ �

i∈p buffer(i, db) | Lc = −1} ; // db-wide buffer

Bi = Bi ∪ patchBuffer ; // fill Bi with newly created patch buffer
return p ;

23


