
Frequently asked questions

Why do I get the “Java heap space” error, and how to fix it ?

Why flsgen_structure did not find a structure satisfying my targets ?

Why flsgen_generate failed to generate a landscape ?

Can I specify the spatial extent and resolution of produced landscapes ?

How can I change the spatial configuration of produced landscapes ?

Can I specify the minimum distance between patches of the same class ?

How does the computing time of rflsgen varies according to input and parameters ?

How does flsgen_structure selects the structures to return if there are several possibilities ?

What is Choco Solver ?

What is Constraint Programming ?

• Why do I get the “Java heap space” error, and how to fix it ?

By default, rJava allocate 512MB to the Java virtual machine (JVM). When generating large landscapes, this
can be insufficient. The solution is, before loading rflsgen (and any other package using rJava), to increase
the memory allocated to the JVM using options(java.parameters = "-Xmx4g"). Note that this allocates
4GB to the JVM. If you want to allocate another amount of memory just replace 4g with the desired value.

• Why flsgen_structure() did not find a structure satisfying my targets ?

There are two possibilities:

1. If rflsgen indicates that “User targets cannot be satisfied”, it means that the solver has finished
exploring the search tree and that there is no solution satisfying your targets. As the underlying
Constraint Programming solver (Choco) relies on exact algorithms, this message is the guarantee that
your targets cannot be satisfied. To date, this is not possible to explain why the targets are contradictory
in a human-readable way. So what you can do is try to see if there are obvious contradictions in your
targets (e.g. two classes that both need to occupy 60% of the landscape), or try with other targets.

2. If rflsgen indicates that “User targets could not be satisfied under the specified time limit”, it
means that the time limit was reached before the solver could find a solution, or prove that there
is no solution. By default the time limit in flsgen_structure() is 60 seconds, you can increase
this limit with the time_limit argument, or disable it with the value 0. You can also change the
search_strategy, which indicate to Choco-solver how to construct its search tree. Although this
search strategy does not influence whether the targets will be satisfied or not, some strategies can
be more efficient depending on the problem configuration. Available search strategies in Choco
are: ""DEFAULT", "RANDOM", "DOM_OVER_W_DEG", "DOM_OVER_W_DEG_REF", "ACTIVITY_BASED",
"CONFLICT_HISTORY", "MIN_DOM_LB", "MIN_DOM_UB" (please refer to Choco documentation if you
want more details).

• Why flsgen_generate() failed to generate a landscape ?

Although flsgen_structure() relies on exact search algorithms to identify suitable landscape structures,
the spatial generation algorithm used in flsgen_generate() is stochastic and can fail. The reason for using
a stochastic algorithm is that finding a spatial embedding of a landscape structure is equivalent to the
polyomino packing problem, which is known to be NP-Complete (i.e. computational complexity increases

1

https://choco-solver.org/
https://choco-solver.org/docs/solving/strategies/


exponentially with problem size). It would not be possible to generate reasonably large landscapes (e.g. larger
than 100x100) in a feasible time. Using a stochastic algorithm offers fast runtime, but at the price that it can
fail without knowing if a solution exists. In practice, the success of flsgen_generate() is highly constrained
by the proportion of the non-focal landscape class (NON_FOCAL_PLAND), and to a lesser extent by the
min_distance parameter. In conclusion, you have two possibilities: (1) if NON_FOCAL_PLAND is less
than 15%, you should probably generate a landscape structure with a higher NON_FOCAL_PLAND, (2)
else, you can increase the number of trials with the max_try and max_try_patch parameters or decrease the
min_distance parameter.

• Can I specify the spatial extent and resolution of produced landscapes ?

This can be specified with the x, y, epsg, resolution_x and resolution_y parameters in the
flsgen_generate() function.

• How can I change the spatial configuration of produced landscapes ?

There are three parameters influencing the spatial configuration of produced landscapes in flsgen_generate:

• The min_distance parameter, defines the minimum distance between any two patches of the same
class.

• The terrain parameter, is a continuous raster guiding the generation algorithm.
• The terrain_dependency parameter, defines to which extent the generation algorithm is influenced by

the terrain.

Terrain rasters can either be generated “on-the-fly” by flsgen, which relies on the diamond-square (or midpoint
displacement) algorithm or given as input. This last option makes it possible to use continuous neutral
landscapes generated with other software packages such as NLMR, or even digital elevation models from real
landscapes.

• Can I speficy the minimum distance between patches of a same class ?

Yes, with the min_distance parameter of flsgen_generate(). You can also play with the
min_max_distance, which makes the minimum distance between the patch variable and comprised
between min_distance and min_max_distance.

• How does the computing time of rflsgen varies according to input and parameters ?

As there are a lot of factors that can influence the computing time of rflsgen, there is no simple answer to
this question.

Regarding flsgen_structure(), the number of classes and the landscape dimensions influences the size of
the underlying constraint satisfaction problem. But a large problem can be solved very quickly if the solver
can take advantage of the targets to filter the search tree. In general, fragmentation indices such as MESH,
NPRO, or DIVI, are more difficult to satisfy if the targets only allow one value. However, in most cases
flsgen_structure() only needs a few seconds (or less) to find a solution.

flsgen_generate() has a more predictable computing time, which is mainly driven by the landscape
dimension and the total proportion of focal classes. In practice, it is fast even for large landscapes (several
millions of cells), and the RAM should be a problem before the computing time.

• How does flsgen_structure() selects the structures to return if there are several possi-
bilities ?

Most often, there can be hundreds, thousands, or even millions of possible structures satisfying user targets.
flsgen_structure() relies on Choco-solver to identify suitable landscape structures. The default behaviour
of Choco-solver is to return the first solution found. If we ask the solver to find another solution, it
will return the second found, etc. The nb_solutions parameter in flsgen_structure() tells Choco-
solver how many solutions it must find before stopping the search. There is also a search_strategy
parameter in flsgen_structure() which indicate to Choco-solver how to construct its search tree. Although
this search strategy does not influence whether the targets will be satisfied or not, it can help diversify
the generated structure by exploring the search tree in different ways. Available search strategies in

2

https://ropensci.github.io/NLMR/
https://choco-solver.org/
https://choco-solver.org/


Choco are: ""DEFAULT", "RANDOM", "DOM_OVER_W_DEG", "DOM_OVER_W_DEG_REF", "ACTIVITY_BASED",
"CONFLICT_HISTORY", "MIN_DOM_LB", "MIN_DOM_UB" (please refer to Choco documentation if you want
more details).

• What is Choco Solver ?

Choco-solver is an open-source Java Constraint Programming solver. It is a reliable solver implemented with
state-of-the-art algorithms which have been used in academic and industrial projects for years.

• What is Constraint Programming ?

Constraint programming (CP) is a declarative paradigm for modelling and solving constraint satisfaction
and constrained optimization problems. In this context declarative means that the modelling of a problem
is decoupled from its solving process, which allows the primary focus to be on what must be solved rather
than describing how to solve it. CP is a subfield of artificial intelligence that relies on automated reasoning,
constraint propagation and search heuristics. As an exact approach, CP can provide constraint satisfaction
and optimality guarantees, as well as enumerate every solution of a problem. In CP, the modeller represents a
problem by declaring variables whose possible values belong to a specified finite domain, by stating constraints
(mainly logical relations between variables), and eventually by defining an objective function to minimize
or maximize. A solution to the problem is an instantiation of every variable such that every constraint is
satisfied. As opposed to mixed-integer linear programming, constraints can be non-linear and variables of
several types (e.g. integer, real, set, graph). A CP solver then handles the solving process relying on an
automated reasoning method alternating a constraint propagation algorithm (deduction process on values
within domains that does not lead to any solution) and a backtracking search algorithm. In a nutshell, more
than satisfiability, each constraint embeds a filtering algorithm able to detect inconsistent values in variables
domains. At each step of the backtracking search algorithm, the solver calls the constraint propagation
algorithm that repeatedly applies these algorithms until a fixed point is reached. When it is proven that a
part of the search tree contains no solution, the solver rolls back to a previous state and explores another
part of the search tree: this is backtracking. Note that most CP solvers are also able to handle Pareto
multi-objective optimization.

If you are interested in learning more about Constraint Programming, you can read the Handbook of Constraint
Programming: Rossi, E. F., van Beek, P., & Walsh, T. (2006). Handbook of Constraint Programming.

3

https://choco-solver.org/docs/solving/strategies/
https://choco-solver.org/

