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ABSTRACT

Assessment of forest carbon (C) stock and sequestra-

tion and the influence of forest harvesting and cli-

matic variations are important issues in global forest

ecology. Quantitative studies of the C balance of

tropical forests, such as those in Papua New Guinea

(PNG), are also required for forest-based climate

change mitigation initiatives. We develop a hierar-

chical Bayesian model (HBM) of aboveground forest

C stock and sequestration in primary, selectively

harvested, and El Niño Southern Oscillation (ENSO)-

effected lowland tropical forest from 15 years of

Permanent Sample Plot (PSP) census data for PNG

consisting of 121 plots in selectively harvested forest,

and 35 plots in primary forest. Model parameters

indicated: C stock in aboveground live biomass

(AGLB) of 137 ± 9 (95% confidence interval (CI))

MgC ha-1 in primary forest, compared with 62 ± 18

MgC ha-1 for selectively harvested forest (55%

difference); C sequestration in primary forest of

0.23 ± 1.70 MgC ha-1 y-1, which was lower than

in selectively harvested forest, 1.12 ± 3.41 MgC

ha-1 y-1; ENSO-induced fire resulted in significant C

emissions (-6.87 ± 3.94 MgC ha-1 y-1). High vari-

ability between PSPs in C stock and C sequestration

rates necessitated random plot effects for both stock

and sequestration. The HBM approach allowed

inclusion of hierarchical autocorrelation, providing

valid CIs on model parameters and efficient estima-

tion. The HBM model has provided quantitative

insights on the C balance of PNG’s forests that can

be used as inputs for climate change mitigation

initiatives.

Key words: biomass; sequestration; degradation;

selective-harvesting; REDD+; carbon; bayesian;

hierarchical.

INTRODUCTION

Tropical forests cover 10% of global land area but

remain a scientific frontier due to structural and

biological complexity and high temporal variability

associated with complex successional processes

(Chambers and others 2001). A constraint is the

limited number of long-term studies quantifying
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tropical forest dynamics and the affects of anthro-

pogenic and natural disturbances, such as har-

vesting and fire (Clark and others 2001b; Lewis and

others 2009). Long-term studies, whilst difficult to

maintain, especially in developing countries, are

essential to the development and testing of

hypotheses regarding processes and rates of eco-

logical recovery following disturbance, both

anthropogenic and natural (Taylor and others

2008). In this study, we report on a spatially and

temporally extensive Permanent Sample Plot (PSP)

network in the forests of Papua New Guinea (PNG)

and examine the impact of selective-harvesting and

the El Niño Southern Oscillation (ENSO)-induced

fires on aboveground forest carbon (C) stock and C

sequestration. To achieve this, we develop a hier-

archical Bayesian model (HBM) and derive

parameters that can be used to estimate the C and

CO2 balance of selective-harvesting, forest regen-

eration and degradation after fire, which are

important inputs for climate change mitigation

initiatives.

There is still considerable debate over carbon

dynamics in primary tropical forests. Field mea-

surements of C stock change suggest that primary

tropical forests are a significant C sink (Phillips and

others 1998; Baker and others 2004a). For exam-

ple, Lewis and others (2009) examined C stock

development for PSPs in Africa and reported that

primary forest is on average sequestering C at the

rate of 0.63 MgC ha-1 y-1 with a bootstrapped

95% confidence interval (CI) 0.22–0.94. The study

of Lewis and others (2009) is consistent with other

studies on the C balance of forests (Phillips and

others 1998; Baker and others 2004a), in that they

combine PSP measurements across time and space,

and report an average and a 95% CI. This is despite

studies observing strong spatial and site-based

variability in C stock (for example Malhi and others

2006). Other authors suggest that primary forest

should be in equilibrium with C sequestration in

growth largely balanced by C emissions due to

mortality and decomposition (Clark and others

2001b; Wright 2005; Sierra and others 2007). The

role of recovering forest as a C source or a C sink

remains poorly understood (Grassi and others

2008; Olander and others 2008; Ramankutty and

others 2007), and there is a contention over the

extent and recovery of forests in PNG after selec-

tive-harvesting (Shearman and others 2009; Filer

and others 2009; Shearman and others 2010).

Studies elsewhere suggest that species differences

in wood density are an important consideration in

assessing rates of carbon sequestration in tropical

regrowth forests (Baker and others 2009; Malhi

and others 2004). Other disturbances have also

been important in PNG forests. In 1997 and 1998,

the twentieth century’s most intense ENSO event

provoked severe droughts across equatorial tropical

forests that induced forest fires and severely

affected the C stock (Nepstad and others 2004).

Catastrophic mortality events such as fires drive

tropical forest structure and dynamics (Connell and

Slatyer 1978; Johns 1986, 1989), and their impact

needs further investigation (Phillips and others

2004).

Tropical forests play a crucial role in the global C

cycle through the storage and sequestration of C in

living forest biomass. This has been recognized with

the international climate change mitigation initia-

tive to reduce emissions from deforestation and

forest degradation (REDD+) coupled with the

enhancement of forest C stocks through forest

restoration, sustainable forest management and

forest conservation in developing tropical countries

(UNFCCC 2009, 2010; Fox and others 2011b).

Mitigation initiatives such as REDD+ can poten-

tially offer economic, environmental and social

benefits with the intersection of carbon markets,

climate and environmental protection and, if

implemented appropriately, could provide wider

social and economic opportunities for indigenous

people in developing tropical countries.

Papua New Guinea has approximately 33 million

(M) ha of tropical forests (Shearman and others

2008), which have been subject to a high rate of

conversion due to timber harvesting and agricul-

ture (Shearman and others 2009; Filer and others

2009), and has, therefore, become a focus of

REDD+ initiatives. However, significant policy,

institutional and technical challenges need to be

overcome before REDD+ becomes operational

(Howes 2009; Melick 2010). Technical challenges

include: estimation of forest C stock in different

forest types (Gibbs and others 2007; Fox and others

2010); change in these stocks due to forest har-

vesting (Kauffman and others 2009) and forest fires

(Phillips and others 2004); and estimating rates of C

sequestration in primary and regenerating forests

across the forest estate (Olander and others 2008).

Fox and others (2010) presented a methodology for

estimating forest C from PSPs, and reported the first

estimates of forest carbon in lowland tropical forest

in PNG. Bryan and others (2010) also reported

estimates of forest carbon based on a range of data

sources from PNG. However, it is the change in

forest C pools over space and time and consequent

emissions of carbon dioxide to, or removals from

(uptake of C in living biomass), the atmosphere due

to different land-use activities that are most
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important for REDD+ implementation (Gibbs and

others 2007). Purchasers of reduced emission

credits (whether they be international organiza-

tions, other countries or corporate entities) will

require assurance that estimates of C stock, C

sequestration and reductions in net CO2 emissions

are accurate and precise. All these challenges have

high scientific currency given the urgency of cli-

mate change mitigation coupled with the loss of

biodiversity associated with deforestation and deg-

radation in the tropics (Venter and others 2009;

Laurance and others 2011).

Given the importance of discussions on the glo-

bal carbon balance and the climate mitigation

potential of tropical forests, there is a need to

identify improved statistical approaches that go

beyond simply averaging across datasets and con-

structing 95% CIs. One of the challenges with

statistical analysis of PSP data is autocorrelation

between measurements. Autocorrelation results

from spatial, temporal or hierarchical variation that

is not captured by deterministic model structures

(such as a simple mean) reducing estimation effi-

ciency and biasing hypothesis tests on estimated

parameters or inferences on the average such as a

95% CI (Fox and others 2001). It is likely that

autocorrelation is pervasive in models of forest C

stocks and sequestration, as they are parameterized

using data that have an implicit hierarchical

structure; trees are nested within plots, which are

repeatedly measured through time and/or space.

Furthermore, studies have observed strong spatial

and temporal variation in C stocks (Malhi and

Wright 2004); however, examination of the liter-

ature reveals that these variations are rarely

accounted for. This is significant given that these

models are being used to estimate the C balance of

forests and more recently, as quantitative input to

forest-based climate change mitigation initiatives.

Hierarchical Bayesian models (HBMs) can facili-

tate the explicit modelling of autocorrelation (Clark

2005; Clark and Gelfand 2006; Cressie and others

2009). The objective of this study is to test the HBM

approach for modelling the forest carbon balance of

PNG’s forests; for isolating the influence of selec-

tive-harvesting and ENSO-induced fires; and pro-

viding ecological insights.

MATERIALS AND METHODS

PSPs

The PNG Forest Research Institute (PNGFRI) estab-

lished a system of PSPs in the early 1990s, some in

forest immediately after selective-harvesting, and

others in primary forest across PNG (Figure 1;

Table 1). As can be observed in Table 1, some plot

measurements in selectively harvested forest span-

ned the ENSO event, which induced fires in many

lowland tropical forests in PNG in 1997 and 1998

(Barr 1999). The same ENSO event was observed to

cause drought and increased tree mortality in Sar-

awak (Nakagawa and others 2000), and in the

Amazon (Cochrane and others 1999; Laurance and

others 2004). These PSPs are described in detail

elsewhere (Fox and others 2010; Yosi and others

2011), however, the PSP system was designed to

effectively sample the range of floristic compositions

in lowland tropical forests in PNG (Alder 1998). PSPs

Figure 1. Spatial

distribution of PSPs across

Papua New Guinea. Note

that each location may

represent two or more

PSPs.
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have been established and remeasured from 1990

onwards, at different intervals from annual census

to 10 years between census (see Table 1). In sum-

mary, PSPs are 1 ha (100 m 9 100 m) in size with

all stems greater than 10 cm identified to the species

level with diameter at breast height (1.3 m) mea-

sured in every census, and measured for height in

the first census for each stem. Diameter was mea-

sured above the buttress, when a buttress was

present. Stem heights for successive remeasure-

ments were estimated using species-specific height-

diameter models described in Fox and others (2010,

2011a). To supplement our limited sample in pri-

mary forest (Bryan and others 2011), we included

an additional 22 plot measurements of aboveground

C as collated by Bryan and others (2010). Each

Bryan and others (2010) plot measurement was a

single forest census (no repeated measurements)

using similar measurement standards as the PSP

dataset, that is, stems greater than 10 cm identified

to the species level with DBHOB measured for

diameter (above the buttress).

Aboveground live biomass (AGLB) was esti-

mated using the wet forest allometry of Chave and

others (2005); Eq. 1. The wet forest allometry of

Chave and others (2005) includes biomass mea-

surements from PNG (Edwards and Grubb 1977),

and was successfully applied to PNG tree mea-

surements in Fox and others (2010). For tree i, we

denoted Di the diameter in centimeters (cm), Hi the

total height in meters (m) and qi the wood specific

gravity in grams per cubic centimeter (g cm-3) for

each species derived from Eddowes (1977) and the

compilation for Asian tropical forest (IPCC 2006).

For species with no wood density information

(36% of the 686 tree species found in PNG), an

average value of 0.477 across all species on PSPs

was used (Brown 1997; Chave and others 2003).

For plot j at date d, we denoted Ijd the total number

of trees with DBH at least 10 cm and we computed

AGLBjd the aboveground living biomass (Eq. 1).

Consistent with previous studies, AGLB will be

reported in megagrams per hectare (Mg ha-1). For

further details of the error correction methodology

and biometric modelling used to estimate AGLB,

refer to Fox and others (2010)

AGLBjd ¼
XIjd

i¼1

0:0776� qiD
2
i Hi

� �0:94
h i

ð1Þ

The C content of biomass is reported assuming

that dry biomass is 50% C (Clark and others 2001a;

Houghton and others 2001; Malhi and others

2004). We then computed Cjd, the carbon stock of

plot j at date d and applied a multiplier (1.1) to

estimate the contribution of stems with DBH less

than 10 cm (Chave and others 2003; Baker and

others 2004a; Fox and others 2010) (2).

Cjd ¼
1

2
AGLBjd

� �
� 1:1 ð2Þ

Details of allometry and AGLB calculations for

supplementary primary forest data can be found in

Bryan and others (2010). Note that Bryan and

others (2010) also used the allometry of Chave and

others (2005) to estimate aboveground biomass.

Bryan and others (2010) applied a root to shoot

ratio of 0.12 for lowland and 0.22 for montane

forest to each AGLB estimate. To isolate the AGLB

component of C stock, we used the multiplier 0.88

for lowland and 0.78 for montane forest. This

resulted in compatible AGLB estimates from Bryan

and others (2010) and as measured on the PSPs in

this study.

Based on the PNG vegetation classification of

Hammermaster and Saunders (1995), our final

combined C stock database for PNG was composed of

138 plots in lowland tropical forest (0–1,000 m asl);

7 plots in lower-montane (1,000–2,000 m asl); and

11 plots in mid-montane forest (2,000–3,000 m asl).

Hierarchical Bayesian Model for C
Dynamics

We modelled C stock and sequestration using a

hierarchical state-space Bayesian model (Cressie and

others 2009). We benchmark all sequential mea-

surements using a starting date (d in Eq 1 and 2) as to,

which corresponds to either the first measurement

Table 1. Number of Plots and Number of Measurements by Disturbance for the Papua New Guinea Forest
Research Institute PSPs

Forest type Disturbance Plots 1 Census 2–4 Census >4 Census Total measurements

Harvested ENSO fire 23 5 15 3 68

None 98 17 53 28 354

Primary None 13 7 6 0 21

ENSO, El Niño Southern Oscillation.
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for primary (undisturbed) plots or the date of

disturbance (selective-harvesting or year of fire

disturbance (1997 or 1998) for fire affected plots) for

disturbed plots. By benchmarking plots in this way,

we can test for differences in the C stock and C

sequestration rates for the three types of plots. We

use random plot effects to account for the hierar-

chical structure of the data. We incorporate year of

measurement as a random effect to account for

temporal variation, that is, the influence of annual

variations in environment and climate on stock and

sequestration.

We use the notation N l;Vð Þ to define the Nor-

mal distribution with mean l and variance V and

the notation IG s; rð Þ to defined the Inverse-Gamma

distribution with shape s and rate r. We assumed

that Cjd was normally distributed, with variance r2

and with mean equal to a linear function of t (time)

with intercept a and slope b. The intercept a indi-

cated the initial C stock, whereas the slope b indi-

cated the sequestration rate reported in megagrams

C per hectare per year (MgC ha-1 y-1) (3).

Cjd � N aj þ bjt; r
2

� �
ð3Þ

In Eq. 3, we present a linear model of C stock

over time, however, studies have suggested that C

stock in forest recovering from disturbance should

follow an initially exponential trend with an

asymptotic tendency as the forest approaches full

recovery (Brown and Lugo 1990; Hughes and

others 1999). Following this we fitted a modified

Chapman-Richards (Zeide 1993) model to selec-

tively harvested PSPs. The modified Eq. 4 is an

asymptotic non-linear model, as applied to C

accumulation after disturbance by Brack and others

(2006) (Eq. 4);

Cjd � N aj þ bj e�
cj
t

� �
; r2

� �
ð4Þ

where the intercept a indicated the initial C stock,

parameter b indicated upper asymptote, and

parameter c represents the shape of the curve to

this asymptote (Brack and others 2006).

The Full Model (Model 1)

We fitted a full model (denoted Model 1) inclusive

of (i) fixed effect a a;bf g;S for plot status S (S ¼ P for

primary forest, H for selectively harvested and B for

burned plots) on both the slope b and the intercept

a, (ii) fixed effect c a;bf g; A;T ;Rf g for altitude A, mean

annual temperature T and annual rainfall R on

both the slope and the intercept, (iii) plot random

effects b a;bf g on both the slope and the intercept

and (iv) annual random effects da on the year of

measurement for temporal variation. Elevation,

temperature and precipitation were derived from

the global high resolution climate surfaces of Hij-

mans and others (2005) and were normalized using

the function f xð Þ ¼ x � E xð Þ½ �= SD xð Þ½ � to facilitate

Markov Chain Monte Carlo (MCMC) convergence.

The intercept a and slope b for Model 1 can be

defined as follows;

aj ¼ aa;S þ ba;j þ ca;Af Að Þ þ ca;T f Tð Þ þ ca;Rf Rð Þ þ da;d

ð5Þ

bj ¼ ab;S þ bb;j þ cb;Af Að Þ þ cb;T f Tð Þ þ cb;Rf Rð Þ ð6Þ

We assumed a hierarchical structure for the model

defining first-level priors for the plot random effects:

b a;bf g � N 0;V a;bf g;b
� �

and for the annual random

effects: da;d � N 0;Va;d

� �
. Second-level priors were

assumed to be non-informative with large variances.

For parameters denoted a : a � N 0; 1:0�ð 106Þ, for

parameters denoted c : c � N 0; 1:0� 106ð Þ, for var-

iance parameters denoted V and r2 : V ; r2 � IG

1:0� 10�3; 1:0� 10�3ð Þ.

Model Fitting

The conditional posterior for each parameter was

obtained using a Gibbs sampler (Gelfand and Smith

1990) available through the JAGS software (http://

www-fis.iarc.fr/�martyn/software/jags/http://www-

fis.iarc.fr/�martyn/software/jags/). We ran two

MCMC simulations of 200,000 iterations. The

‘burn-in’ period was set to 100,000 iterations and

the ‘thinning’ to 1/200. We then obtained 1,000

estimations for each parameter. We checked chain

convergence using the Gelman Rubin statistic

(Gelman and others 2003). We note that a hier-

archical model with similar specification could

have been fitted in the maximum likelihood

framework using Generalized Linear Mixed Mod-

els, but an advantage of the Bayesian approach is

the flexibility in model specification.

Model Comparison

We compared the full Model (Model 1) with two

simpler models, denoted Model 2 and Model 3.

Model 2 included only (i) fixed effects a a;bf g;S of plot

status S on the slope and intercept and (ii) random

plot effects b a;bf g on the slope and the intercept. In

Model 2 covariates for Altitude, Precipitation and

Temperature were not included, and neither was

the random effect on the year of measurement.

Examination of parameter estimates and model

diagnostics for Model 1 indicated that neither

environmental covariates nor the random effect on

1280 J. C. Fox and others



the year of measurement were significant (see

‘Results’ section). Model 3 included only fixed

effects a a;bf g;S of the plot status S on the slope and

intercept. Model 3 did not include any random

effects and is analogous to a classical linear model.

The DIC (Deviance Information Criterion) was

used to compare models. The DIC is the sum of the

mean deviance (with Deviance = -2 log(likeli-

hood)) and the number of parameters pD. A dif-

ference of more than 10 is taken as a rough index

of difference between two models and rules out the

model with the higher DIC (Spiegelhalter and

others 2002). When the DIC difference is less than

10, the best model is the one with the lower

number of parameters pD, in accordance with the

parsimony principle.

Parameter Significance

From the posterior distribution of each parameter,

we computed a credible 95% CI. If the interval

included zero, we assumed that the parameter was

not significantly different from zero.

Predictive Posterior of the Carbon Stock

We computed the predictive posterior p of cðtÞ, the

carbon stock at time t (7). The predictive posterior

included variability in the process (for example,

plot variability) and parameter uncertainty. We

denoted H the vector of parameters.

p CðtÞð Þ ¼
Z

H

p CðtÞjHð Þp Hð ÞdH ð7Þ

RESULTS

C Stock Trends Across PSP
Remeasurements

Selectively Harvested PSPs

There were a range of trends in C stock observed on

selectively harvested PSPs. For example, there was

an exponential trend for Giluwe01 and Oomsi02

(Figure 2); a concave curvature with increasing

sequestration after disturbance for Pasma01 and

Umbuk01; and a linear trend for Mokol01 and

Wasap01. Some PSPs exhibited high rates of C

sequestration (above 3 MgC ha-1 y-1; Wasap01,

Mokol01, Oomsi02), whereas others (Giluw01,

Pasma01 and Umbuk01) indicated lower rates

below 1.7 MgC ha-1 y-1. The modified Chapman-

Richards (Eq. 4) provided no improvement in fit

when compared to a linear model of C sequestra-

tion for selectively harvested PSPs. This is most

likely because our measurement period (maximum

of 23 years, but often below 15 years) was not long

Figure 2. Trends in

carbon stock of AGLB

after selective-harvesting

for selected PSPs.
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enough for the expression of a sigmoidal or non-

linear tendency in C stock change.

Overall Trends

To examine mean trends and variability in the PNG

PSP data, we constructed a graph (Figure 3) with

measurements benchmarked against either the first

measurement for primary plots or the date of dis-

turbance (selective-harvesting; 1997 or 1998 for

fire affected plots) for disturbed plots.

C stock and sequestration are highly variable

across the PSPs. Carbon stock in primary forest

PSPs is generally (but not uniformly) higher than

in selectively harvested and burned PSPs. Carbon

sequestration is generally positive on selectively

harvested PSPs and negative on PSPs burned in

1997 or 1998 (Figure 3).

HBM Model Selection

The estimated variation (assessed using DIC) is

equivalent for models 1 and 2, which both include

random effects, but is far larger for Model 3, which

only includes fixed effects (Table 2). Despite hav-

ing the same DIC, Model 2 is superior to Model 1

because it is more parsimonious, having fewer

parameters (pD = 319). None of the parameters for

Altitude, Rainfall and Temperature, nor random

effects on the year of measurement (temporal

variation), were significantly different from zero.

Therefore, Model 2 was the preferred model for

estimating C stock and sequestration.

Parameter Estimates

The HBM approach was used to determine C stock

at t0 and the average C sequestration across

re-measurements for primary, harvested and

ENSO-burned PSPs (Table 3; Figure 4). Carbon stock

in primary forest (137 ± 9 MgC ha-1) is signifi-

cantly higher than in harvested (62 ± 18 MgC ha-1)

and burned (70 ± 26 MgC ha-1) forest (Table 3).

Carbon sequestration in harvested forest (1.12 ±

3.41 MgC ha-1 y-1) is higher than C sequestration in

primary forest (0.23 ± 1.70), but neither were sig-

nificantly different from zero. Carbon sequestration

in burned forest (-6.87 ± 3.98) is significantly neg-

ative. If we assume that primary and selectively har-

vested forest C stocks are representative averages

across forest types and regions, then the reduction in

C stock due to selective-harvesting (DCSH) is on

average 75 MgC ha-1 (55%). We can construct an

additive 95% CI for DCSH as 75 ± 25 MgC ha-1 (or

55 ± 18%).

There was a significant variance in the plot ran-

dom effect for both the intercept (C stock at t0;

Vab = 641.4) and the slope (C sequestration rate;

Vb,b = 1.29) indicating that plot to plot variation in

C stock at t0 and C sequestration was high. The

insignificance of covariates for temperature, rainfall

and altitude suggests that C stock and sequestration

are not driven by short-term environmental and

climatic variation, but rather differences in forest

types and species composition and the degree of

disturbance from selective-harvesting or fire.

Comparing CIs for the parameters (Table 3)

when random plot effects are included (Model 2)

and excluded (Model 3) indicates that CIs are

narrower for all parameters for Model 3. This cre-

ates a false impression of precision in parameter

estimates. When hierarchical variability is included

in Model 2, CIs that reflect the true precision of

parameter estimates result. Model 2 also explained

far more variability in the data as indicated by the

lower deviance (Table 2). This is due to the high

Figure 3. All data for permanent sample plot remea-

surements. Note that time zero is the first measurement

for primary plots; the date of selective-harvesting for

harvested plots; or 1998 for fire affected plots.

Table 2. Model Comparison

Deviance pD DIC

Model 1 2827 343 3170

Model 2 2851 319 3170

Model 3 4100 7 4107

DIC, Deviance Information Criterion; pD, the number of parameters.

1282 J. C. Fox and others



plot to plot variability in the intercept and slope,

which is captured using random parameters.

DISCUSSION

Selective-harvesting results in the displacement of

living forest biomass to non-living biomass, a

component of which is taken off site as wood

products with the remaining displacement termed

collateral damage and becoming decomposing res-

idue on the forest floor (Blanc and others 2009).

Collateral damage in tropical forest harvesting can

be large and consists of crown material, peripheral

trees that are affected during tree felling and that

subsequently die, and tree boles used for bridge,

road and deck construction (Johns and others

1996; Feldpausch and others 2005). The enhanced

pool of decomposing residue resulting from collat-

eral damage in disturbed forest can be a significant

source of CO2 emissions (Keller and others 2004;

Feldpausch and others 2005).

Although our sample of primary forest plots is

small, we can estimate the reduction in C stock due

to selective-harvesting (75 ± 25 MgC ha-1). This

provides an estimate of the displacement of living

aboveground biomass to collateral damage and

wood products. However, our comparison is

unbalanced and unmatched; we have far more

observations in selectively harvested forest, and

plots were not designed for this comparison. Mat-

ched plots in adjoining primary and selectively

harvested forest would provide a more valid com-

parison (Bryan and others 2011). Nevertheless, an

initial estimate of a 55% reduction in AGLB is a

useful indicative figure for calculations of reduc-

tions in aboveground forest C due to commercial

selective-harvesting in PNG. Similar reductions

have been observed elsewhere, with surprising

consistency: Lasco and others (2006), Tangki and

Chappell (2008), Feldpausch and others 2005 and

Gerwing (2002) all observed 50% reductions in

AGB in the Philippines, Borneo, Southern Amazon

and Brazilian Amazon, respectively.

Estimated reduction in C stock due to selective-

harvesting can be used for preliminary national

estimates of harvesting related emissions. The PNG

Forest Authority estimates that the area subject to

selective-harvesting between 1961 and 2002 is

approximately 3.4 million (M) hectares (PNGFA

2007). Based on our estimate of C reduction due to

harvesting this equates to a total displacement of

255 ± 85 Teragram C (TgC; million MgC) and an

average annual displacement of 6 ± 2 TgC y-1

Table 3. Parameter Estimates for Model 2

Parameter Explanation Parameter estimate 95% CI M22 95% CI M33

ap C stock t0—Primary 137.001 ±0.62 ±6.90

aH C stock t0—Harvested 61.741 ±18.34 ±7.53

aB C stock t0—Burned 70.171 ±25.93 ±13.91

bP C sequestration—Primary 0.23 ±1.70 ±1.11

bH C sequestration—Harvested 1.12 ±3.41 ±2.93

bB C sequestration—Burned -6.871 ±3.98 ±3.10

Va,b Variance on plot random effect on intercept 641.401 ±140.17

Vb,b Variance on plot random effect on slope 1.291 ±0.85

r2 Variance 30.921 ±6.26 ±63.47

1Parameter estimate is significantly different from zero, 2 Credible 95% CI for Model 2 inclusive of random plot effects, 3 95% CI for Model 3 with no random effects.

Figure 4. Predicted posterior for a hierarchical Bayesian

model with green solid line for primary plots, blue solid line

for selectively harvested plots, and red solid line for plots

affected by El Niño Southern Oscillation-induced fires in

either 1997 or 1998. Dashed lines in each posterior indi-

cate 95% CIs inclusive of random plot variability on the

intercept and slope (Color figure online).
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from living to non-living AGB. Over this period,

approximately 43 M m3 of logs have been removed

from PNG’s native forests (Bank of Papua New

Guinea (Various years); SGS (Various years)). If we

assume 33% recovery of raw logs into timber

products (Blanc and others 2009), and an average

wood density for exported logs of 0.58 g cm-3 (Fox

and Keenan 2011), then approximately 5 TgC will

have been stored in timber products over this time.

By this supposition, approximately 250 ± 85 TgC is

either collateral damage left in the forest to

decompose or is sawmilling residue. Decomposition

of biomass in tropical forests occurs rapidly with

woody material completely decomposed with the C

fraction emitted as CO2 after 15 years (Keller and

others 2004; Chambers and others 2000). Assum-

ing complete decomposition of collateral damage

and sawmilling residue (which is often combusted),

approximately 917 ± 312 TgCO2 has been emitted

due to selective-harvesting in PNG between 1961

and 2002. The year to year variability in emissions

will be high due to variability in the rate of timber

harvesting, particularly over the last 10 years

(Bank of Papua New Guinea 2009).

There is high variability in previous estimates of

C sequestration in secondary tropical forest. Some

studies indicate less than 2.5 MgC ha-1 y-1

(Brown and Lugo 1990), whereas others indicate

sequestration of between 7.5 and 10 MgC ha-1 y-1

(Hughes and others 1999; Scatena and others

1993), with many studies falling in the middle of

this range with sequestration between 2.5 and

7.5 MgC ha-1 y-1 (Fehse and others 2002; Uhl and

Jordan 1984). Many of these studies were for

heavily disturbed forest in early successional phases

where sequestration is dominated by the growth of

pioneers (Fehse and others 2002). Our analysis

included species-specific wood densities (Fox and

others 2010) to capture the true C contribution of

low wood density pioneers (Baker and others

2004a). A very large 95% CI (±3.41) on the

parameter indicated high variability in C seques-

tration after selective-harvesting, possibly due to

variation in successional stage, forest type, level of

disturbance, edaphic conditions and the climatic

regime in the period following disturbance. On

average, observed C sequestration in regrowth in

PNG was at the lower end of the range described

above (1.12 ± 3.41 MgC ha-1 y-1, generally be-

low 5 MgC ha-1 y-1). This may be due to the

lower levels of disturbance relative to secondary

forest resulting from agriculture. Selective-har-

vesting will have resulted in variability in suc-

cessional stages between, and also within, the

large one hectare PSPs. Gaps created due to

selective-harvesting will experience regeneration

that can result in high sequestration, whereas

undisturbed areas of latter successional forest may

experience little C sequestration, or even negative

sequestration due to mortality (Feeley and others

2007). We also need to be mindful of a possible bias

in our sample of secondary forest towards forest

that contains future merchantable timber; heavily

harvested secondary forest may have been avoided

(Fox and others 2010; Bryan and others 2011).

The PSPs represent a valuable sample of selec-

tively harvested forest in the Oceania region with

good spatial and temporal representation (Fox and

others 2010; Yosi and others 2011). We contend,

therefore, that the average sequestration (1.12

MgC ha-1 y-1), despite high uncertainty (±3.41),

is a sound estimate for C recovery rates after

selective-harvesting. If we assume that the

3.4 M ha harvested between 1961 and 2002 is

harvested at the annual rate of 0.083 M ha, then

the net C sequestered since harvesting began can

be calculated as (41*1.12*0.083 + 40*1.12*0.083 +

39*1.12*0.083….. 1*1.12*0.083) and is approxi-

mately equal to 80 TgC or 294 TgCO2 over this

period. If we include parameter uncertainty in this

estimate, the 95% CI for sequestered C is 80 ± 244

TgC. Despite this high uncertainty, if the average

sequestration occurred across selectively harvested

forest it would offset approximately one third of the

emissions from decomposition of collateral damage

and sawmilling residue (917 TgCO2).

There has been speculation (Shearman and others

2009) that PNG’s secondary forests are degraded to

the extent that they are incapable of recovery. The

present study suggests otherwise, indicating that

selectively harvested forests are reasonably stocked

after harvesting (62 ± 18 MgC ha-1), and are

recovering C at the rate of 1.12 ± 3.41 MgC

ha-1 y-1 (see also Yosi and others 2011). The high

variability indicates that some plots are degrading

but the bulk of plots are either maintaining or

increasing biomass and carbon stock. If the average

sequestration rate is maintained at a linear rate, it

would take approximately 65 years for harvested

forest to recover the 75 MgC ha-1 that was dis-

placed during selective-harvesting.

The observed uptake of C by primary tropical

forests (Phillips and others 1998) has become a point

of contention in recent years (Clark and others

2001b; Wright 2005). Results for the limited number

of plots (only six plots with remeasurements) in this

study indicated a mean sequestration rate in primary

forest of 0.23 ± 1.57 MgC ha-1 y-1. This figure is

lower than biome averages for primary forest

(0.44 MgC ha-1 y-1, Phillips and others 1998;
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0.61 MgC ha-1 y-1, Baker and others 2004b;

0.63 MgC ha-1 y-1, Lewis and others 2009). These

higher than expected C sequestration rates for pri-

mary forest have led several authors to suggest a

pervasive alteration of primary tropical forest

dynamics from global environmental changes such

as increased atmospheric CO2 (Phillips and others

1998; Baker and others 2004b; Lewis and others

2009). The sequestration rate for our limited sample

of primary forest measurements was lower than

other studies, but the CI included zero as well as

previous estimates from Phillips and others (1998)

and Baker and others (2004b). More plots and more

measurements are required to understand the

sequestration trend of primary forests of PNG.

The ENSO event of 1997/1998 caused a drying out

of lowland tropical forests in PNG, with large-scale

wildfires causing widespread tree mortality (Barr

1999; Yosi and others 2011). The estimated annual C

emission in AGLB after this event is -6.87 (±3.98)

MgC ha-1 y-1. Balch and others (2008) report a

similar loss of AGLB of -8.5 MgC ha-1 y-1 for a

large-scale fire experiment in Amazonian forests.

Some of the PSPs in this study were measured for

10 years after ENSO-induced fires, and indicated

that degradation persists with net C emissions

10 years after the fire disturbance. The significant

emissions associated with ENSO as observed here

have implications for global C cycles.

We have used HBM model parameters inclusive

of valid parameter uncertainties for some initial

estimates of CO2 emissions from harvesting and

fires. These estimates can provide a quantitative

basis for forest C accounting systems for PNG.

Analysis of carbon dynamics in PNG forests can be

based on these estimates, published forest carbon

book-keeping methods (for example, Ramankutty

and others 2007; Blanc and others 2009) and ele-

ments of the Voluntary Carbon Standard (VSC)

(2008) to construct an appropriate forest C

accounting system for PNG (See Fox and Keenan

2011; Hunt 2011; Coote and Fox 2011). Note that

the initial emission estimates detailed in this paper

include only aboveground C dynamics. A full C

account would need to be inclusive of understory

plants, lianas and vines, woody debris, litter, coarse

and fine roots and soil C (Blanc and others 2009;

Nimiago and others 2011; Nimiago 2011).

In this study, hierarchical autocorrelation was

highly significant due to high plot to plot variability

in both the intercept (C stock at t0) and the slope (C

sequestration). This has important implications for

carbon dynamic models. Deterministic model

structures fail to effectively explain these plot to plot

differences, despite the inclusion of environmental

variables (altitude, rainfall and temperature).

Explaining structural complexity and temporal var-

iability in tropical forests is an ongoing scientific

challenge (Chambers and others 2001). As our

understanding of this complexity improves, there

will be opportunities to include covariates in deter-

ministic model structures that better explain site to

site and plot to plot variability. Until this occurs, it

seems prudent to use model structures, such as

HBM, that account for high site to site variability.

The HBM model structure used in this study has

several advantages over reporting averages and

95% CIs. It avoided the presence of autocorrelation

in model residuals that result in biased standard

errors of parameter estimates (Johnston 1972), and

bias in inference on averages or parameter estimates

such as 95% CIs. When we excluded plot level

random effects (in Model 3) the CIs for different

parameters were considerably lower, creating a

false impression of precision. This is statistically well

known. When positive autocorrelation is present

amongst residuals located on the same sampling

unit (for example; several remeasurements of a

plot) then parameter CIs will be underestimated

and hypothesis tests on the significance will be

biased upwards and the type I error rate will be

inflated, that is, too often it will be concluded that

the value is different from zero. Inferences on the

parameters and averages are particularly important

in light of controversies on the C balance of tropical

forests. Many studies that have observed significant

net C sequestration in primary tropical forest have

failed to account for autocorrelation resulting from

hierarchical data structures. When autocorrelation

is incorporated, estimation efficiency is improved,

as each measurement is bringing information to the

model, independent of other measurements. Effi-

ciency considerations are important in light of the

cost of tropical forest census. Given the importance

of discussions on the global carbon balance and the

climate mitigation potential of tropical forests, we

need improved statistical methodology such as

hierarchical Bayesian models, which are more

appropriate for tropical forest data from repeated

plot measurements.

We have explicitly modeled uncertainties using a

Bayesian approach, however, there are several

sources of error which we were unable to include in

our analysis such as errors in the field measurement

of individual trees (Clark and others 2001a; Phillips

and others 2002), and errors resulting from the

application of a generalized allometric equation to

estimate biomass from individual tree measure-

ments (Chave and others 2004). These errors can be

large and important, and are difficult to quantify,
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hence, in the future, the full error budget of forest C

estimates should be quantified and incorporated into

a Bayesian framework.

In conclusion, we have reported defensible esti-

mates of aboveground C and C sequestration in

primary, selective-harvested and ENSO-burned

forest using a HBM. These estimates have improved

our understanding of the forest C cycle in PNG with

the recovery of selectively harvested forest found to

be highly variable, but on average constituting a

significant net C sequestration, in contrast to the

extensive degradation inflicted by ENSO fires, with

effected forest constituting a significant net C emis-

sion. They also provide quantitative inputs for cli-

mate change mitigation initiatives such as REDD+.
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