
ANNEX C – SENSITIVITY ANALYSIS PROCESS AND PRESENTATION OF 

THE MORRIS’ SCREENING METHOD 

 

This annexe aims at describing the different steps of this analysis and highlight key questions and decisions. 

 

 

OBJECTIVES AND GLOBAL FRAME 

 

Sensitivity and uncertainty analysis techniques (SA and UA) consist in studying the impact of 

variations of input parameters on output variables (Saltelli et al. 2008). There are commonly used to deal 

with complementary objectives and the related questions: 

-  Detect influent parameters  

Question: Which parameters are really influent on model outputs? Which are not influent and could 

be fixed to their default value? Is the model over-parameterized (numerous non-influent parameters) 

and could some process be simplified? 

- Assess the effect of uncertainties regarding input parameters values on model predictions  

Question: For which parameters do the uncertainty regarding the mean value has important – and 

potentially problematic – effects on model predictions? On which parameters should we focus a 

future recalibration effort?  

- Check the consistency of model’s behaviour 

Question: Are the results consistent with theoretical knowledge regarding key demographic 

processes? Are model predictions influenced by the expected parameters? 

- Detect potential interactions between parameters  

Question: Do the different parameters - and related processes - interact and in a consistent and 

expected way? 

 

Besides the variety of questions that these techniques can answer, there also exist numerous possible 

ways to conduct these analyses, depending on the objectives, the integration of such analyses within a global 

approach, and knowledge and questions about the variation range of each input parameters. In our case, we 

had the possibility to conduct this analysis on the short (50 years, like for the quantitative evaluation 

simulations) or long run (500 years, like for the qualitative evaluation simulations), using no-management, 

prospective management or historical management scenarios, and varying input parameters within their 

“natural range” or using an empirical 10 or 20% variation. Among all these possibilities, we decided to apply 

this approach on the retrospective/historical simulations used for the quantitative evaluation step, as it 

enabled to control simulated management, to assess the effect of uncertainties regarding demographic 

parameters on model predictions and detect priority parameters for the future recalibration process – also 

based on these historical simulations.  

 



 

INPUT FACTORS AND VARIATION RANGE 

 

We analysed conjointly the sensitivity of output variables to 42 demographic parameters (21 per 

species), combined with the effect of two “initial state” factors. As regard demographic processes, we 

decided to vary parameters within their expected natural variation, approached by the 95% confidence 

interval of calibration data, i.e. +/- 1.96 standard deviations around the mean value. We only tested two 

options for individual effects in allometric and growth equations: with/without individual effects, so as to 

assess the impact of the consideration of individual variability on model predictions. The input parameters 

related to stand structure and topography were not varied separately, but conjointly through an “initial state” 

factor encompassing several stand characteristics. Indeed, the structure and composition of the initial stand 

appeared to us as an important component of this analysis, as we hypothesised that the influence of 

demographic processes on stand development dynamics would depend on its maturation state. A Principal 

Component Analysis (PCA) of initial stand characteristics showed that Queige’s stands highly differed 

regarding their initial density and their “heterogeneity”, which encompassed both diameter diversity and 

composition. Apart from pure stands, we indeed observed a group of well mixed and uneven-aged stands on 

the one hand, and a group of spruce-dominant stands with a more even-aged structure on the other hand. 

Pure or quasi-pure spruce were set apart to ensure a minimum proportion of 20% of fir (over total basal 

area), to be sure to have enough firs to detect the effect of fir demographic parameters on model predictions 

at the stand scale. We then selected four stands to represent this diversity, combining two levels of 

heterogeneity (P36 and P39 for mixed and uneven-aged stands, P26 and P28 for spruce-dominant even-aged 

stands) and two levels of density (P26 and P36 for low density ~30 m²/ha, P28 and P39 for high density ~40 

m²/ha) . These two axes were synthesised as two factors in the sensitivity analysis, respectively IS_F1 and 

IS_F2. In the experiment design, each of the four selected stands was associated with the management 

history that had effectively been applied on that stand, so as to control management and detect only 

demographic parameters’ effects.  

 

CHOICE OF THE SENSITIVITY ANALYSIS TECHNIQUE : THE MORRIS’ SCREENING METHOD 

 

Numerous sensitivity/uncertainty analysis techniques exist (Saltelli), differing from the way the input 

parameters are varied, the necessity – or not – of repetitions, the sensitivity indices calculated etc. The choice 

of a given technique depends on several criteria, one of the most important being the maximum number of 

simulations conceivable – i.e. the size of the experiment design – considering simulation constraints, which 

highly depend on several factors: the type of model (stochastic or determinist), the number of parameters 

tested, the model’s computing speed and the length of simulations (ref Saltelli, Mexico). In our case, this 

choice was highly constrained by the computation speed, with was very low due to the light interception 

model, which is time consuming. This, added to a non-negligible number of input parameters and the 

presence of stochastic processes, led us to select the Morris ‘method (Figure C-1).  



 

 

 

 

Figure C-1: Grids for sensitivity analysis techniques selection,  depending on several criterion. 

These two grids are adapted from those presented by Stéphanie Mahévas and Bertrand Iooss at the Mexico 

sensitivity analysis summer-school 2012 (http://reseau-mexico.fr). 

 

 

The Morris’ method is a screening technique designed to sample large factorial spaces in an efficient 

way, following several trajectories based on one-at-a-time (OAT) discrete jumps within parameter levels 

(Figure C-2). The method ensures that, provided a sufficient number of trajectories, the set of simulations 

made at the different points in the parameter space detect efficiently influent and non-influent parameters at a 

low simulation cost – i.e. with a lower required number of simulations than other methods. The size of a 

Morris’ experiment design is indeed defined by r*(p+1), for r trajectories and p parameters, whereas a 

complete plan would involve n^p combinations of p parameters with n levels. No rules exist regarding the 

definition of the “sufficient” number of trajectories. However, so as to ensure sufficient screening intensity 

of factorial space, the total number of trajectories (r) should be chosen while considering the numbers of 

tested parameters (p), the number of levels per parameters, model’s stochasticity and computation speed, 

therefore involving a trade-off between computation cost and accuracy of the sensitivity indices. The number 

of levels (modalities) tested per factor should be pair (C. Bruchou, personal communication) but depends on 

the variation range of each parameter and on the maximum number of simulations conceivable. A higher 

number of levels per factor would require a higher number of trajectories – and thus a larger simulation 

design – to ensure sufficient and balanced sampling of all levels of a given factor.  

 

 

http://reseau-mexico.fr/


 

 

Figure C-2: Illustration of Morris' screening method of factorial space. 

This figure illustrates the sampling strategy used by the Morris’ screening method. It is based on the 

definition of r trajectories (here r = 3) screening the factorial space, defined by p factors (here p= 3) with 

several modalities per factor (here 3). Each trajectory starts at a random coordinate of the factorial space, 

defined by a combination of modalities of all factors (points). The trajectory is then determined step by step 

by a One At a Time (OAT) process, involving successive variations of factors’ modalities. Each trajectory is 

thus defined by p+1 different combinations of factors modalities (here 4). This plots have been realized with 

the R function plot3d() of the “rgl” R package (Adler and Murdoch, 2012; R Core Team, 2012). 

 

 

 EXPERIMENT DESIGN DEFINITION 

 

In this study, given the high computation cost (2-3 minutes per simulation) but the possibility to run 

simulations on a cluster (~10 hours per bloc of 250 simulations), we estimated that we could run up to a few 

thousands simulations. With p=44 factors, we could thus use from 20 to 200 trajectories. We finally used 

r=100 trajectories, which appeared as a good compromise, but decided to limit the number of levels to 4 in 

the case of demographic parameters, while the number of levels had already been set to 2 for other factors 

(individual variability parameters and initial state). We thus obtained an experiment design, of r*(p+1) = 

4500 different combinations of parameter values. We used the morris() R function from package “sentivity” 

(Pujol et al., 2012; R Core Team, 2012) to generate the experiment design. An adaptation of this method  by 

Campolongo et al. (2007) select the r best trajectories among m tested trajectories, so as to optimize the 

exploration of factorial space. The experiment design was run externally on the cluster and the simulation 

outputs were then uploaded and transferred to the morris() R function to conduct the sensitivity analysis. 

 

  



SENSITIVITY INDICES AND RELATIVE FACTORS’ INFLUENCE 

 

The Morris’ method is based on the calculation of the elementary effect (EE) –for a given output 

variable – associated with each single variation (jump) of each input parameter. Then, for each input factor, 

the mean of absolute values of all EE (µ*) is considered as a good proxy of its elementary effect on the 

selected output variable, whereas the standard deviation of all EE (σ) assess the variability of its effect, 

indicating either a non-linear effect or potential interactions with other parameters. Morris’ results are often 

presented graphically by σ = f(µ*) (Figure C-3), and both indices are used to interpret factor’s absolute and 

relative influence.  

However, besides analysing both indices separately, we chose to use the index proposed by Ciric et 

al. (2012), which combines both Morris’ indices into a unique sensitivity index (SI), also interpreted as the 

Euclidian distance  between the “sensitivity coordinates” (µ*, σ ) of the factor and the origin (0,0) of the 

Morris’ plot (Figure C-3):   

 

 

By taking both main and second order effects – interactions or nonlinear effects – into account, this 

index gives an estimation of the total effect of each input factor on a given output variable (Figure C-4). It 

therefore enabled the relative influence of input factors to be assessed and factors’ rank to be established for 

each output variable (Table C-2). It also enabled groups of different degree of influence to be detected 

(Figure C-5), so as to put factors’ ranks into perspective (Table C-2). The analysis was performed for seven 

response variables, i.e. final stand structure characteristics (density, basal area, quadratic mean dbh, basal 

area Gini index, pole quantity, species mixture, and pole tree species mixture). A global rank was then 

obtained for each factor, based on the sum of the ranks obtained for all output variables (Table C-2). This 

step allowed us to detect non-influent and influent factors, as well as to assess the impact of uncertainties 

regarding input parameters on model’s predictions. 

 



 

Figure C-3: Graphical representation of Morris’ sensitivity results. 

The first plot (above) is the classical representation of Morris’ sensitivity indices results and has been obtained with the 

morris() function of the R package “sensitivity” (Pujol et al., 2012; R Core Team, 2012). It enables the conjoint analysis 

of both Morris’ indices values for each input factor, i.e. their main effect (µ* = mu.star) and the variability of this effect 

(σ = sigma) on a given outpout variable (here G= stand basal area, m²/ha). The values obtained for each factor are 

referred to by the factor code name (cf. Table for the entire factor name and signification). A high *µ value indicates 

that the output variable is highly sensitive to this input factor, while a high σ value indicates that the effect of this factor 

is either nonlinear or act in interaction with other parameters (NB : the method does not allow to separate both sources 

of variability). The second plot comes from a package diffused by the MEXICO scientific network (http://reseau-

mexico.fr) during summer schools on sensitivity analysis. It enables the computation of 95% confidence intervals 

associated with each index (based on bootstrap selection among individual effects of each factor). The sensitivity 

indices are in the same unit as the considered output variable (here m²/ha). 

http://reseau-mexico.fr/
http://reseau-mexico.fr/


 

Figure C-4 : Representation of Morris' results using the combined sensitivity index. 

This graphic is a personnal and alternative representation of Morris’ results based on the sensitivity index proposed by Ciric et al. (2012) and combining both Morris indices. Each 

bar thus represents the value of this combined index for an input factor and a given ouput variable (here G, stand basal area, m²/ha), with the dark grey part corresponding to the main 

effect of the factor (Morris’ µ*) and the light grey part corresponding to the variability component (Morris’σ). The sensitivity index is in the same unit as the considered output 

variable (here m²/ha) 



 

Figure C-5 : Detection on influence group for each output variable, based on the combined sensitivity index. 

Each of this plots represent the sensitivity index (SI) values obtained by each input factor (sorted by decreasing SI 

value) for a given output variable. This enabled groups of very influent, influent, moderately influent and few or low 

influent factors to be graphically detected. Factors’ names are not indicated, for a better readability, but were given by 

crossed analysis with table of factors’ ranks. The sensitivity index is in the same unit as the considered output variable: 

t/ha for the total stem density (N), m²/ha for stand basal area (G), cm for the quadrtaic mean diameter (Dg), no unit for 

the Gini index based on individual basal areas (GiniG), t/ha for pole density (PoleQty), % of spruce basal area over total 

basal area for the mixong ratio (MixR), % of spruce pole number over the total pole numer for the pole mixing ratio 

(PoleMixR).



SENSITIVITY OF SA RESULTS TO INPUT FACTORS’ VARIATION RANGE 

 

The original sensitivity analysis have been conducted by variying demographic parameters within their 

uncertainty range, approached by +/- 1.96 standard deviation around their mean (Table C-1). This choice was 

driven by the idea that this would approach the “natural variation range” of demographic parameters, and thus 

avoid extreme parameters values, possibly leading to unrealistic situations. This asumptions however led to 

very uneven variation ranges between parameters, corresponding to variations from ~0.6% to ~80% around the 

mean.  

 

Yet, it is acknowledged that the range explored for a given parameter might affect the results of 

sensitivity/uncertainty analysis techniques: a narrow variation range might reduce the ability of the SA 

technique to detect the influence of a “very influent” parameter, whereas a large variation range might 

artificially increase the influence of a “moderately influent” one. This might explain some of our results, but 

not all of them. Indeed, although the high influence of the regeneration parameter might be partly explained by 

its wide variation range (+/- 1.96 SE corresponded to a variation of +/- 66.9 and 81.8% of the mean value, for 

spruce and fir respectively), the variation range of the two growth parameters (approximately +/- 20% for 

growth alpha and +/- 10% for growth beta ) was close to the mean variation range calculated on all parameters 

(+/- 18%), whereas parameters with the same order of variations were not detected as influent (ex. CHR_mK, 

CBH_mK). Moreover, we also detected the non-negligible influence of “low uncertainty parameters”, despite 

their reduced variation range (+/- 0.64% for S_R1_0, +/-1.24% for H_mK_0, +/- 4.48% for CBR_b0). 

 

Considering the possible high sensitivity of SA results to the size of input factors’ variation range, we 

decided to conduct another sensitivity analysis to check the sensitivity of SA results to parameters’ variation 

range. This second SA was based on a fixed +/-20% variation range for all demographic parameters 

(corresponding to the mean % of variation for the first SA),whereas other parameters we varied as in the 

previous SA.  

 

 



 

 

Table C-1 : Description of parameters’ values and variation ranges for the two sensitivity analysis. 

This table indicates, for demographic and allometrics parameters, the mean values and variations ranges for the two 

successive sensitivity analysis (SA), respectively +/- 1.96 SE and +/-20% around mean value, except for the individual 

variability parameters (in grey *), which had two modalities (mean value or null). 

Equation Parameter Code mean SE
mean    

+1.96 SE

mean     -

1.96 SE

% varia-

tion

mean      

+ 20%

mean         

- 20%

G_A_0 -3.97E+00 4.25E-01 -3.13E+00 -4.80E+00 2.10E+01 -3.17E+00 -4.76E+00

G_A_1 -2.02E+00 2.02E-01 -1.62E+00 -2.41E+00 1.96E+01 -1.61E+00 -2.42E+00

G_b_0 5.88E-01 3.80E-02 6.62E-01 5.14E-01 1.27E+01 7.06E-01 4.70E-01

G_b_1 4.16E-01 1.90E-02 4.53E-01 3.79E-01 8.95E+00 4.99E-01 3.33E-01

G_sB_0 6.00E-01 2.40E-03 na na na na na

G_sB_1 6.02E-01 2.91E-03 na na na na na

G_sL_0 1.05E-01 4.00E-04 na na na na na

G_sL_1 1.84E-01 8.90E-04 na na na na na

CBH_mK_0 4.88E-01 8.45E-02 6.54E-01 3.22E-01 3.39E+01 5.86E-01 3.90E-01

CBH_mK_1 7.14E-01 6.16E-02 8.35E-01 5.93E-01 1.69E+01 8.57E-01 5.71E-01

CBH_sK_0 6.16E-01 0.00E+00 na na na na na

CBH_sK_1 4.62E-01 0.00E+00 na na na na na

CBR_b_0 5.25E-01 1.20E-02 5.49E-01 5.01E-01 4.48E+00 6.30E-01 4.20E-01

CBR_b_1 4.54E-01 1.33E-02 4.80E-01 4.28E-01 5.74E+00 5.45E-01 3.63E-01

CBR_mK_0 -7.74E-01 4.48E-02 -6.86E-01 -8.62E-01 1.13E+01 -6.19E-01 -9.29E-01

CBR_mK_1 -3.54E-01 4.30E-02 -2.70E-01 -4.38E-01 2.38E+01 -2.83E-01 -4.25E-01

CBR_sK_0 1.58E-01 1.00E-04 na na na na na

CBR_sK_1 1.22E-01 2.15E-04 na na na na na

H_mK_0 3.53E+00 2.24E-02 3.57E+00 3.49E+00 1.24E+00 4.24E+00 2.82E+00

H_mK_1 3.28E+00 3.59E-02 3.35E+00 3.21E+00 2.15E+00 3.94E+00 2.62E+00

H_r_0 7.67E-02 1.50E-03 7.96E-02 7.38E-02 3.83E+00 9.20E-02 6.14E-02

H_r_1 8.46E-02 1.55E-03 8.76E-02 8.16E-02 3.59E+00 1.02E-01 6.77E-02

H_sK_0 1.04E-01 1.00E-04 na na na na na

H_sK_1 1.77E-01 8.94E-05 na na na na na

S_A1_0 7.68E+01 2.62E+01 1.28E+02 2.54E+01 6.69E+01 9.22E+01 6.14E+01

S_A1_1 8.91E+00 3.72E+00 1.62E+01 1.62E+00 8.18E+01 1.07E+01 7.13E+00

S_B1_0 -9.28E+00 3.15E-02 -9.22E+00 -9.34E+00 6.65E-01 -7.42E+00 -1.11E+01

S_B1_1 -6.11E+00 2.67E-02 -6.06E+00 -6.16E+00 8.55E-01 -4.89E+00 -7.33E+00

S_B2_0 2.40E-01 1.40E-03 2.43E-01 2.37E-01 1.14E+00 2.88E-01 1.92E-01

S_B2_1 1.88E-01 1.26E-03 1.90E-01 1.85E-01 1.31E+00 2.25E-01 1.50E-01

S_B3_0 -1.90E-03 1.23E-05 -1.88E-03 -1.92E-03 1.27E+00 -1.52E-03 -2.28E-03

S_B3_1 -1.50E-03 1.15E-05 -1.48E-03 -1.52E-03 1.50E+00 -1.20E-03 -1.80E-03

S_R1_0 4.65E+00 1.51E-02 4.68E+00 4.62E+00 6.36E-01 5.59E+00 3.72E+00

S_R1_1 4.55E+00 1.32E-02 4.57E+00 4.52E+00 5.70E-01 5.46E+00 3.64E+00

S_R2_0 -4.92E-02 4.50E-03 -4.04E-02 -5.80E-02 1.79E+01 -3.94E-02 -5.90E-02

S_R2_1 -2.70E-02 3.71E-03 -1.97E-02 -3.42E-02 2.70E+01 -2.16E-02 -3.24E-02

M_P1_0 -3.60E+00 1.35E-01 -3.33E+00 -3.86E+00 7.34E+00 -2.88E+00 -4.32E+00

M_P1_1 -3.21E+00 2.54E-01 -2.71E+00 -3.71E+00 1.55E+01 -2.57E+00 -3.85E+00

M_P2_0 -1.25E-02 4.00E-03 -4.66E-03 -2.03E-02 6.27E+01 -1.00E-02 -1.50E-02

M_P2_1 -3.01E-02 7.80E-03 -1.48E-02 -4.54E-02 5.08E+01 -2.41E-02 -3.61E-02

M_P3_0 2.20E-02 2.70E-03 2.73E-02 1.67E-02 2.41E+01 2.64E-02 1.76E-02

M_P3_1 2.28E-02 5.40E-03 3.34E-02 1.22E-02 4.64E+01 2.74E-02 1.82E-02

Parameters description Calibration Variation range - 1st  SA
Variation range  
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The comparison of SA results revealed several differences regarding parameters’ influence and relative 

order (Table C-2). Although we also detected the influence of the two initial state factors, their impact was less 

important than for the first SA and many demographic parameters had similar or higher influence, with 

sometimes very high sensitivity indices values, due to larger variations of model predictions. We even reached 

unrealistically high densities for adult trees (N up to 600-800 t/ha and G up to 100-150 m²/ha; Figure C-7a-b) 

and poles (up to 2000-4000 t/ha depending on initial stands; Figure C-7e), as well as for tree sizes (Dg up to 

150 cm; Figure C-7c), leading to stands with very large trees (which affected GiniG index with values up to 

0.8; Figure C-7d). These values question the realism of the variation ranges tested, which led to unrealistic 

situations.   

The two growth parameters were still among those parameters, but their relative influence changed, with 

a higher influence of growth beta than growth alpha, probably due to the increase of its variation range (~20% 

against ~10% previously for growth beta; ~20% for growth alpha in both SA). In the same way, a smaller 

variation range strongly reduced the influence of the two seed production parameters (SA_1), while the 

increased variation range revealed the potentially high influence of other regeneration parameters like light 

survival parameters (especially S_B1 and S_B2) or sapling height growth, with SR_1 being among the most 

influent parameters (n° 1 and 4 for spruce and fir). Higher sapling/seed survival would explain the very high 

pole densities obtained for these simulations (Figure C-7e). 

Contrary to the first SA, we detected here the influence of allometric parameters affecting tree height 

(H_mK and H_r) and crown radius (CBR_b), as well as the associated individual effect (CBR_sK and H_sK). 

These parameters highly influenced tree diameter growth (Dg) due to their effect on crown dimensions and 

thus potential light interception. Crown radius also influenced regeneration and stem number, through 

competition for light with saplings and smaller trees. These parameters are also potentially responsible for the 

unrealistically high tree sizes and density values obtained for these simulations (Figure C-7). 

Finally, we also detected a high influence of mortality parameters linked to dbh-related mortality for fir 

(M_P2_1) and competition-related mortality for spruce (M_P3_0), though their variation range was lower than 

for the first SA (50.79% and 24.05% respectively). This reveal the regulation role of the mortality process 

when density is high and not regulated by management (harvesting quantities were fixed to the historical 

recorded values and thus not adapted to higher simulated productivity). 

This SA results comparison revealed the high sensitivity of SA results to parameters’ variation range, as 

well as the risks associated with variation range disconnected from realistic variation ranges and possibly 

leading to unrealistic situations. This thus confirmed our initial assumption regarding the choice of the 

variation range, which should be as realistic as possible, and the fact that variation within +/- 1.96 SE enabled 

us to limit these risks compared to a fixed +/- 20% range, as we had no information about the “natural variation 

range”. We hope that future recalibration results conducted on different ecological conditions would help us 

define this “natural variation range” and thus refine the SA process. 

 



 

 

Table C-2: Comparison of sensitivity analysis results depending on factors' variation ranges. 

This table compares the results obtained for the first (+/- 1.96 SE, left) and second (+/- 20%, right) sensitivity analysis 

(SA). Each sub-table indicates, for each output variables (in columns), the rank obtained by each input factor (in lines), 

based on the comparison of the sensitivity indices proposed by Ciric et al. (2012) and considering both Morris’ indices 

(µ* and σ). The last column indicates the global order, based on the sum of the ranks obtained by each factor. Besides 

factors’ rank, groups of factors have been identified depending on their relative degree of influence (determined 

graphically based on Morris’ indices): very high (dark grey), high (grey), medium (light grey) and low (white). Tested 

factors encompass demographic and allometric parameters for each species (0 for spruce and 1 for fir), as well as the two 

“initial state” factors (IS_F1 and IS_F2). Studied output variables included stand density (N, t/ha) and basal area (G, 

m²/ha), tree mean quadratic diameter (Dg, cm), stand diameter diversity (GiniG, no unit) and composition (MixR, % of 

spruce basal area), total pole density (PoleQty, t/ha) and pole mixing ratio (PoleMixR, % of spruce poles). 

Factors N G Dg GiniG
Pole 

Qty
MixR

Pole 

MixR

Rank 

Sum

Global 

Rank
N G Dg GiniG

Pole 

Qty
MixR

Pole 

MixR

Rank 

Sum

Global 

Rank

G_A_0 2 1 1 3 4 1 5 17 1 2 2 5 14 5 4 25 57 7

G_A_1 7 4 7 6 8 5 7 44 6 11 6 9 24 14 7 27 98 11

G_b_0 3 2 2 1 6 2 9 25 2 4 1 1 1 7 1 8 23 2

G_b_1 8 5 5 5 11 4 27 65 8 6 4 8 10 10 2 10 50 5

G_sB_0 38 36 35 35 43 36 42 265 37 31 33 41 41 34 42 29 251 40

G_sB_1 39 44 36 39 39 40 40 277 40 38 44 18 13 43 23 37 216 32

G_sL_0 43 33 38 36 36 39 39 264 36 44 36 21 40 44 26 39 250 39

G_sL_1 41 42 41 40 38 38 30 270 38 36 39 39 12 40 39 36 241 38

CBH_mK_0 30 21 33 34 14 31 24 187 32 26 24 37 37 26 34 38 222 35

CBH_mK_1 31 35 32 24 21 25 26 194 34 29 31 31 39 37 36 35 238 37

CBH_sK_0 37 40 37 43 40 37 37 271 39 42 41 42 43 30 43 12 253 41

CBH_sK_1 35 43 43 42 44 44 36 287 42 41 38 43 42 42 44 34 284 44

CBR_b_0 17 12 20 29 9 22 31 140 20 3 8 2 19 2 6 15 55 6

CBR_b_1 18 27 26 17 15 12 35 150 21 10 18 13 7 6 17 6 77 9

CBR_mK_0 24 34 17 13 12 33 28 161 23 17 25 34 33 12 29 22 172 25

CBR_mK_1 22 28 15 9 33 17 15 139 19 22 20 33 16 25 27 20 163 21

CBR_sK_0 36 39 40 38 35 35 38 261 35 43 42 40 44 36 38 33 276 43

CBR_sK_1 44 37 39 37 42 42 41 282 41 40 40 19 9 41 40 43 232 36

H_mK_0 23 20 21 22 13 7 21 127 13 20 15 17 31 19 16 28 146 19

H_mK_1 26 29 22 15 27 26 23 168 25 24 34 38 34 23 37 21 211 31

H_r_0 33 25 23 27 32 8 29 177 29 19 16 11 38 16 13 17 130 17

H_r_1 32 26 13 21 24 15 33 164 24 30 12 7 26 38 10 44 167 24

H_sK_0 42 41 44 41 41 41 44 294 44 39 37 20 18 33 20 41 208 30

H_sK_1 40 38 42 44 37 43 43 287 42 37 43 44 22 35 41 42 264 42

S_A1_0 4 6 8 7 2 9 2 38 5 32 23 28 35 18 30 31 197 29

S_A1_1 1 8 6 8 5 6 1 35 4 18 21 29 36 28 28 23 183 27

S_B1_0 29 15 25 31 29 28 32 189 33 5 5 12 5 3 11 3 44 3

S_B1_1 21 32 18 19 16 11 34 151 22 13 14 27 27 15 24 5 125 14

S_B2_0 34 22 34 25 19 32 12 178 31 9 11 25 21 4 18 4 92 10

S_B2_1 28 31 29 20 25 19 19 171 27 15 29 14 2 17 14 7 98 11

S_B3_0 25 16 30 28 30 27 18 174 28 21 27 30 17 13 32 26 166 23

S_B3_1 20 19 16 18 20 16 22 131 15 28 35 22 20 29 22 9 165 22

S_R1_0 11 10 12 32 7 20 4 96 10 1 3 3 4 1 5 1 18 1

S_R1_1 27 24 31 33 17 23 14 169 26 7 9 4 11 8 3 2 44 3

S_R2_0 10 18 9 10 10 18 3 78 9 35 30 35 15 39 25 40 219 33

S_R2_1 15 23 10 11 18 30 20 127 13 34 28 36 32 31 35 24 220 34

M_P1_0 9 13 24 23 31 24 11 135 17 12 10 26 25 21 19 16 129 16

M_P1_1 12 14 19 14 22 13 17 111 11 16 19 23 29 22 21 19 149 20

M_P2_0 13 9 28 16 23 21 25 135 17 25 22 32 30 24 33 30 196 28

M_P2_1 14 17 11 12 34 29 16 133 16 27 26 6 8 20 8 32 127 15

M_P3_0 19 30 27 26 28 34 13 177 29 23 32 16 6 27 15 18 137 18

M_P3_1 16 11 14 30 26 10 10 117 12 33 17 24 28 32 31 11 176 26

IS_F1 5 3 3 2 1 3 8 25 2 8 7 10 3 9 9 14 60 8

IS_F2 6 7 4 4 3 14 6 44 6 14 13 15 23 11 12 13 101 13

Variation of demographic parameters                                            

within +/- 1.96 SE around the mean

Variation of demographic parameters                                     

within +/- 20% around the mean
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Figure C-6 : Values and variability of final stand characteristics, for the first SA. 

 

Figure C-7 : Values and variability of final stand characteristics, for the second SA. 

NB: scales are different from Figure C-6. 



TRADE-OFF NUMBER OF TRAJECTORIES/ ACCURACY OF SENSITIVITY MEASURES 

 

Successive SA test showed that SA results were sensitive to the number of trajectories. Previous analysis 

with r = 30 trajectories led to very high uncertainties regarding sensitivity indices(large confidence intervals) 

and we expected important variations between replications of the same experiment design and thus non-

robustness of the SA results. These uncertainties were reduced with r=100 trajectories, but the confidence 

intervals of some factors were still overlapping, thus questioning the confidence given to factor ranks. The 

comparison between two realisations of the same experiment design enabled us to detect small differences 

regarding factors’ ranks, especially among the moderately influent parameters, although the affiliation to the 

groups of very influent and influent factors and general conclusions were identical. We however detected 

higher variations regarding factors affiliation to the group of “moderately influent parameters”, first because 

this third group did not always appeared clearly when analysing eDist values, second because we observed 

more differences between different run for this group. It was also very difficult to set a limit between low 

and non-influent parameters based on the graphical visualization of different groups.  

These results underlined the necessity to keep the confidence intervals in mind while analysing eDist values 

and factors ranks.  As regard the limit between low and non-influent factors, we finally concluded that using 

a threshold on the sensitivity index values would probably facilitate the analysis, with however high 

uncertainty regarding the value to use for such thresholds.  
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